

Atul Ltd

Project: CRZ clearance for proposed 4.0 km long treated effluent discharge pipeline in Par estuary Dist. Valsad.

CRZ Compliance Report for CRZ Clearance no. ENV-1097-2942-P, dated January 17, 1998. Report Period: April 2022 – September 2022

Sr No.	Condition	Com	olian	ce				
1	The Company shall strictly adhere to all the provisions of CRZ notification of 1991 and subsequent amendments.	Com Deta		e given below	$^\prime$ in the tak	ole:		
	μ	Sr	No.	Clause unde	r CRZ not	ification	Comp	liance
		1		Imposes the in setting up industries, processes in	o and exp operati	oansion of	:	1
		2		List of pr within CRZ.	ohibited	activities	Notec	1
		3		Guideline to permissible		lation of	Noted	d
		4		Procedure f	t.		Minist	
		An	n. 1	Classificatio zone.	n of cost	al regular		<u> </u>
			n. 2	Guidelines f beach/resor	t/ hotels.	<u> </u>		
		Ann. 3 List of petroleum products NA permitted in storage in CRZ except CRZ-1.						
2	The company shall strictly adhere to the conditions stipulated by the Gujarat Pollution Control Board in their Consent order.	vario comp	com us a olied	pany compliects. Stipulationand the same	n made i is certifie	n CCA by d by the e	/ GPCB xternal c	are being
3	The company shall discharge the treated effluent meeting the norms prescribed by GPCB						of treated	
		Sr No.	Par	ameter	Limit Mg/l	Values for April 202 2022 Min.	•	

	г		1		I
1	рН	5.5 to 9.0	7.3	7.9	7.5
2	Temperature	40 oC	30.1	30.9	30.4
3	Colour (pt. co. scale)in units		40.0	70.0	55.0
4	Suspended solids	100	31.0	58.0	46.1
5	Oil and Grease	10	2.9	5.2	4.1
6	Phenolic Compounds	5	0.7	1.0	0.8
7	Cyanides	0.2	ND	ND	ND
8	Fluorides	2	0.7	1.1	0.8
9	Sulphides	2	0.5	1.6	0.9
10	Ammonical Nitrogen	50	7.2	14.8	9.8
11	Arsenic	0.2	ND	ND	ND
12	Total Chromium	2	0.1	0.1	0.1
13	Hexavelent Chromium	1	ND	ND	ND
14	Copper	3	0.3	0.2	0.1
15	Lead	2	ND	ND	ND
16	Mercury	0.01	ND	ND	ND
17	Nickel	5	0.1	0.1	0.1
18	Zinc	15	0.1	0.4	0.3
19	Cadmium	2	ND	ND	ND
20	Phosphate	5	1.8	3.8	2.2
21	BOD (3 days at 27oC)	100	42.0	58.0	49.5
22	COD	250	208.0	244.0	224.1
23	Insecticide/Pestici de	Absent	Absent	Absent	Absent
24	Sodium Absorption Ratio	26	6.1	24.4	11.2
25	Manganese	2	0.1	0.9	0.2
26	Tin	0.1	ND	ND	ND
27	Bio Assay Test	90% survival of fish after 96 hrs. in 100% effluent %	100% survival of fish after 96 hrs. in 100% effluent	100% surviva I of fish after 96 hrs. in 100% effluen	100% survival of fish after 96 hrs. in 100% effluent

The treated effluent quality at the ETP discharge point is regularly being monitored by the Environmental auditors appointed by GPCB.

The river water quality at the discharge point is also regularly being monitored by GPCB. Agencies like NIO, Pollucon Laboratories Pvt. Ltd- MoEF approved agency, Envision Enviro Technologies Pvt. Ltd, Kadam Environment

		consultancy –NABET accredited have also done the monitoring during the years.
		GPCB also monitor the treated effluent quality at intervals. Recent result by GPCB is attached as Annexure 1 .
	The company shall keep records of the	Complied.
	quality of effluents being discharge	We are keeping the records of quality effluents being
	during the tides as per the	discharged during the tides in soft copy as per the
	recommendations of N.I.O.	recommendations of N.I.O.
4	The company shall submit the	'
	quarterly progress report of	1 3 1
	compliance of conditions.	Environment Department of Gujarat during the pipe line
		installation work. Couple of reports were already submitted
		to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.
5	The company shall bear all the cost of	
	the agency to be appointed by the	Troced and will be complied as and when it will come.
	Government for overseeing/monitoring	
	the project activities during	
	construction/operational phases.	
6	The company shall comply with all the	Complied.
	recommendations, additional	Compliance to NIO recommendations are being followed.
	conditions and environmental	Copy of compliance report submitted to Forest and
	safeguards prescribed in the report of	Environment Department of Gujarat was already submitted
	NIO dated March, 1997.	to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.
7	The company shall submit an	Complied.
	Environmental Audit Report every	Latest Environmental audit report by Shree Tapi
	year.	Bhramcharyashram Sabha College, for year 2021-22 was
		submitted vide our letter dated June 28, 2022.
8	The company shall obtain the	Complied.
	necessary permissions from different	We have received GPCB approval for operating 4Km line
	Government department/agencies	vide its consent letter no. 16399 dated December 22, 1998.
	under different laws/Acts.	Copy already submitted to Ministry vide our letter
		Atul/SHE/MoEF/Visit/3 dated April 4, 2017.
9	Any additional conditions which may	Noted and will be complied.
	imposed from time to time.	
1		

Table 1: Quality of treated effluent

Sr No.	Parameter	Results	Results								
INO.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Limits Mg/l			
1	рН	7.2	7.2	7.9	7.8	7.7	7.3	5.5 to 9.0			
2	Temperature	30.3	30.3	30.1	30.3	30.9	30.5	40 °C			
3	Colour (pt. co. scale)in units	50.0	40.0	60.0	50.0	60.0	70.0				
4	Suspended solids	58.0	31.0	47.0	37.0	48.0	56.0	100			
5	Oil and Grease	4.6	3.8	2.9	3.9	5.2	4.4	10			
6	Phenolic Compounds	0.9	1.0	0.8	0.7	0.9	0.7	5			
7	Cyanides	ND	ND	ND	ND	ND	ND	0.2			
8	Fluorides	0.6	0.9	1.1	0.9	0.8	0.7	2			
9	Sulphides	0.5	0.8	0.7	0.8	1.2	1.6	2			
10	Ammonical Nitrogen	7.1	14.8	8.1	11.3	9.6	7.9	50			
11	Arsenic	ND	ND	ND	ND	ND	ND	0.2			
12	Total Chromium	ND	ND	0.1	0.9	0.9	0.1	2			
13	Hexavelent Chromium	ND	ND	ND	ND	ND	ND	1			
14	Copper	0.1	0.3	0.1	0.2	0.2	0.1	3			
15	Lead	ND	ND	ND	ND	ND	ND	2			
16	Mercury	ND	ND	ND	ND	ND	ND	0.01			
17	Nickel	ND	ND	0.1	0.1	0.1	0.1	5			
18	Zinc	0.4	0.6	0.2	0.3	0.2	0.3	15			
19	Cadmium	ND	ND	ND	ND	ND	ND	2			
20	Phosphate	1.8	3.8	2.1	1.8	2.1	1.9	5			
21	BOD (3 days at 27°C)	43.0	48.0	42.0	54.0	58.0	52.0	100			
22	COD	216.0	236.0	208.0	231.0	244.0	210.0	250			
23	Insecticide/Pesticide	Absent	Absent	Absent	Absent	Absent	Absent	Absent			
24	Sodium Absorption Ratio	6.1	24.4	13.5	7.0	8.6	8.0	26			
25	Manganese	0.1	0.9	0.1	0.1	0.1	0.1	2			
26	Tin	ND	ND	ND	ND	ND	ND	0.1			
27	Bio Assay Test	100% survival of fish after 96 hrs. in 100% effluent	100% survival of fish after 96 hrs. in 100% effluent	90% survival of fish after 96 hrs. in 100% effluent %							
	Note: ND is Not D	etected.									

Annexure 1: GPCB results for treated effluent water

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Sample ID:360650 - Analysis Completion:03/10/2022

Dyes and Dye-Intermediates / LAB Inward: 59464

Gujarat Pollution Control Board, Vapi C5/124, GIDC Vapi, Near Hotel Pritam, Vapi - 396 195 Tele:(0260) 2432089

TEST REPORT

Test Report No.: 59464 Date: 03/10/2022

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc., AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka: Valsad, District: Valsad, GIDC: Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : COM-On Complaint)

4. Sample Collected By : C.C Patel,SO
5. Quantity of Sample Received : 5 lit

6. Code No. of the Sample : 360650

7. Date & Time of Collection & Inwarding : 19/09/2022, (1210 to 1210) & 20/09/2022

8. Date of Start & Completion of Analysis : 20/09/2022 & 03/10/2022

9. Sampling Point : ## Final Outlet of the ETP ~ Final Outlet of Central ETP

10. Flow Details (Remarks) : Yes

11. Mode of Disposal : Into Estury of River Par through pipeline

12. Ultimate Receiving Body : Estuary zone of river par

13. Temperature on Collection : 32 & pH Range on pH Strip :@ 7 to 8 On pH strip 14. Carboys Nos for : barcode & Color & Appearance :Brownish

15. Water Consumption & W.W.G (KLPD) : Ind :27956.000 , Dom :938.000 & Ind :23774.000 , Dom :939.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	IS: 3025 (Part - 9) - 1984(Reaffirmed 2006)	Ambient oC - 60 oC	32
2	pH	pH Units	4500 H+ B APHA Standard Methods 23rd edi.2012	1 – 14 pH value As or	6.90
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	85
4	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 - 10000 mg/L	84
5	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standar	1 - 2000 mg/l.	6.72
6	Chemical Oxygen Demand	mg/l	APHA (23rd Edition)- 5220 B Open Reflux Method-20	5.0- 50000 mg/l	194
7	Oil & Grease	mg/l	Liquid - Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	1.6
8	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 - 50 mg/l	0.41
9	Sulphide	mg/l	APHA (23rd Edi.)4500-s2-F -iodometric Method	1-500.0 mg/l	1.1
10	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmer	05-50000 mg/l	56

Laboratory Remarks: Freeze By:279-R.O_279 Dt.: 03/10/2022

R. N. Patel, SSO

Field Observation: sample collected as per is:3025(part-1)1987(re 2019)

Note: 1. * - These parameters are NOT covered under the scope of NABL

- 2. The results refer only to the tested samples and applicable parameters. Endorsement of products is neither inferred nor implied.
- 3. Samples will be destroyed after 10 days from the date of issue of test report unless otherwise specified.
- 4. This report is not to be reproduced wholly or in part or used in any advertising media without the permission of the Board in writing.
- 5. The Board is not responsible for the authenticity for the samples not collected by the Board's officials.
- Total liability of our laboratory is limited to the invoiced amount. Any dispute arising out of this report is subject to Gujarat Jurisdiction only.
- 7. Permissible Limits: as per Schedule VI of EPA Rules, 1986 as ammended by Second and Third ammendment 1993 for Effluents
- 8. Physicochemical and microbiological parameters, Std.Methods for Water and Waste Water- 23rd Edition by APHA.
- 9. Bioassay test (for toxicity) -IS:6582:Part-2:2001; Reaffirmed 2007.

04/10/2022 08:14:55

Atul Ltd

Project: Expansion of agro-chemicals (Pesticides/Herbicides) and bulk drug and pharmaceuticals manufacturing unit.

EC Compliance Report for EC F. No. J -11011/48/2003-IA II (I) dated February 20, 2004. Report period: April 2022 – September 2022

Sr No	Condition	Compliance						
	pecific Conditions :							
i	The gaseous emissions (SO ₂ , NOx, and HCl) and particulate matters from various process units should confirm to the standards prescribed by	variou CCA. Detai Sumn	gaseous emis us process un Is are given in nary of Proces	its confirms to below Table ss Stack resu	to the stan :: ts:	dards pre	scribed by	e matters from GPCB through
	the concerned authorities from time to	Sr No.	Parameter	Standard values as	Unit		r the period 2 – Septem	
	time.			per CCA		Min.	Max.	Avg.
		1	SO ₂	40	mg/Nm³	5.1	26.4	16.1
		2	SO ₂ (kg/T)	2	kg/T	0.5	0.7	0.6
		3	NOx	25	mg/Nm³	8.9	27.8	15.6
		4	HCI	20	mg/Nm³	3.1	13.1	5.8
		5	PM	150	mg/Nm³	13.2	62.8	39.7
		6	PM with Pesticide compound	20	mg/Nm ³	6.3	13.6	9.1
		Sumn Sr No.	nary of flue go Parameter	Standard values as per CCA	Unit		s for the pe 022 – Sept Max.	riod tember 2022 Avg.
		1	PM	100	mg/Nm ³		64.2	52.5
		2	PM (New Boiler 50 TPH)	50	mg/Nm³		43.6	36.4
		3	SO ₂	600	mg/Nm³	264.0	578.0	309.8
		4	NOx	600	mg/Nm³		580.0	306.2
		5	NOx (New Boiler)		mg/Nm ³	218.0	284.0	264.0
	A		ls of stack res	ults for the co	ompliance _l	period is g	iven in Tab	ole 1.
	At no time, the emission levels should go beyond the stipulated standards.	agend At no	nly monitorin cies. time, the emi	ssions excee	ded the pre	scribed lir	nits during	ABL approved report period.
		Sumn	nary of stack ı	results given	in specific	condition I	no. i as abc	ove.

Complied. In the event of failure of control No such case happened during compliance period. pollution system(s) adopted by the unit, the respective should unit not restarted until the control measures are rectified to achieve the desired efficiency. ii Ambient air quality Complied. monitoring Station 10 Ambient air quality monitoring atation have been set up in down wind should be set up in down direction as well as where max. ground level concentration of SPM anticipated wind direction as well as in consultation with GPCB. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory. where max. Ground level List of our ambient air monitoring stations is given below: concentration of SPM anticipated in consultation with the Sr No. Location state pollution control 66 KVA GEB substation 1 board. 2 Opposite shed D 3 West site ETP North site ETP 4 5 Near TSDF 6 Near main guest house 7 At wyeth colony Gram panchayat hall 8 9 Near main office, North site 10 Haria water tank Complied. iii Fugitive emission in work Fugitive emissions in the work zone environment and raw material storage zone environment. area is being regularly monitored by NABL approved third party. product, raw material storage areas must be regularly monitored. The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below: Plant Prescribed Values of VOCs in Area Parameter Limit Milligram per NM³ for the period Mg/nm3 April 2022 – September 2022 Min. Max. Avg. 2.4 D Reactor Phenol 19 ND ND ND Buffer Chlorine 3 1.4 1.9 1.6 tank Benzene Resorcinol 15 0.3 0.6 0.5 Benzene storage tank area near vent 70.6 91.2 110.0 Near Butyl acetate Extractio n/scrubb

er unit

	Pharma	At	Ammonia	18	3.8	7.1	5.5
	T Hairing	second floor work	Ammonia	10	3.0	7.1	3.3
		area					
		Ammoni	Ammonia	18	4.1	8.1	6.4
		а					
		recovery					
		area					
	Epoxy - I	At	ECH	10	2.9	4.9	3.8
		vacuum					
		pump					
		2nd floor	ECH	10	3.3	6.2	4.6
		At vessel POS	ECH	10	3.3	0.2	4.0
		1208 G.F					
	Shed H	At	Nitrobenze	5	1.7	3.1	2.2
		second	ne	J	1.7	0.1	2.2
		floor					
		work					
		area					
	Shed J	Buffer	Chlorine	3	1.1	2.1	1.5
		Tank					
	Results for th	he complian	ce period is o	given in Tak	ole 2.		
The company should	Complied.	(المالية المالية	~ I	:	al la £a.a	
install alkali scrubbers for scrubbing of HCl.	Alkali scrubbi installed duc		•				
Tor scrubbing or rici.	system for so	•	•				
	F, etc.	e. a.a.a		,	, 2, . 2	p. s , o	J 5, J 7 7 7 7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pH of the scrubber tank							
should be monitored	-		k is monitor	ed regular	ly and log	ged. It is	a regular
regularly.	operating pr	actice.					
Liquid effluent generated							
from the scrubber should	Liquid efflue	•	d from the s	scrubber is	being sen	t to ETP	along with
be sent to effluent	plant effluen	it stream.					
treatment plant.							
·							
All the process	Complied.						
All the process equipment/reaction	Central exha	•	•		•		
All the process equipment/reaction vessels should be	Central exha	evolving the	•		•		
All the process equipment/reaction vessels should be connected with central	Central exha	evolving the	•		•		
All the process equipment/reaction vessels should be connected with central exhaust system.	Central exha operations e scrubbing sy	evolving the	•		•		
All the process equipment/reaction vessels should be connected with central exhaust system. Further measures should	Central exha operations e scrubbing sy Complied.	evolving the vstem.	hazardous	gases are	routed thro	ough mul	tiple stage
All the process equipment/reaction vessels should be connected with central exhaust system.	Central exha operations e scrubbing sy	evolving the vstem. e connected	hazardous	gases are	enser syste	ough mul	tiple stage
All the process equipment/reaction vessels should be connected with central exhaust system. Further measures should be taken to reduce the	Central exha operations e scrubbing sy Complied. Reactors are	evolving the vstem. e connected	hazardous	gases are	enser syste	ough mul	tiple stage

	Cooling arrangement should be made for all the solvent storage tanks to minimize evaporation losses.	Oui									age tanks are ation losses.
	The company should monitor VOCs from the incinerator and data submitted regularly to SPCB and Ministry of Environment and forests.	Aut inci Inci GP	horization nerated at nerator sto	granted book our Incine our Incine our Incine our	y GPCB a erator and en regular gh six moi	nd only hence ly mon nthly E	y no VO iitor	onhazardo C genera ed and do complianc	ous ligh tion is r ata subr	t po nullifi mitte	per the valid aper waste is ed. However, d regularly to tails of stack
iv	The effluent generation should not exceed 1191 m3/day (936 m3/d of process effluent and 255 m3/d of domestic effluent).	Hove of r Acc Aug m³/ The	new productions to second	cts. we rec specific co 121, Indus vastewate	quest to condition of trial waste	nsider EC F N water	late lo. J ge the	est figure: 11011/10 neration s	s given 08/2019 shall no	in sa 5-IA- t exc	ion& addition me. II-(I) dated eed 20,514 6 m³/day only
				April 2022	May 2022	June 2022		July 2022	Augus 2022	t	September 2022
		l —	onth wise	284435	295770	2515	93	282500	2895	50	286594
		Pe	er day	9481	9541	8386		9113	9340		9553
		wa		generation uter	•	yond th	he : Va Ap	stipulated lues for th	l stando ne perio Septer	ards. d nber	
			Wastewa		20514	ļ	Mi ı 83		//ax. 1553	923	
	The effluent should be segregated at source of generation.	Cor	generation nplied. ncentrated overy proce	effluent is	0 0	ed and	che	emicals ar	e being	retri	eved through
	The Concentrated effluent stream should be incinerated and non-concentrated effluent after tertiary treatment should be discharged into the CETP.	Am con and to	centrated. I product s	We have o obtained	installed of are sold.	distillat After re	ion ecov	plant wh very of pro	ere the oduct, le	strec ean e	m 2, 4 D is am is distilled ffluent is sent acineration is

The treated effluent should be discharged into estuary zone of river Par through 4.0 km long HDPE pipe line only after it meets the standards stipulated by the Gujarat Pollution Control Board/EPA rules.

Complied.

The discharged effluent is meeting the standards stipulated by state pollution control board limits and values of various parameters of treated effluent is given in **Table 3**.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

Sr	Parameter	Limit	Values for the period April 2022 – September 2022				
No.		Mg/l					
			Min.	Max.	Avg.		
1	рН	5.5 to 9.0	7.3	7.9	7.5		
2	Temperature	40 oC	30.1	30.9	30.4		
3	Colour (pt. co. scale)in units		40.0	70.0	55.0		
4	Suspended solids	100	31.0	58.0	46.1		
5	Oil and Grease	10	2.9	5.2	4.1		
6	Phenolic Compounds	5	0.7	1.0	0.8		
7	Cyanides	0.2	ND	ND	ND		
8	Fluorides	2	0.7	1.1	0.8		
9	Sulphides	2	0.5	1.6	0.9		
10	Ammonical Nitrogen	50	7.2	14.8	9.8		
11	Arsenic	0.2	ND	ND	ND		
12	Total Chromium	2	0.1	0.1	0.1		
13	Hexavelent Chromium	1	ND	ND	ND		
14	Copper	3	0.3	0.2	0.1		
15	Lead	2	ND	ND	ND		
16	Mercury	0.01	ND	ND	ND		
17	Nickel	5	0.1	0.1	0.1		
18	Zinc	15	0.1	0.4	0.3		
19	Cadmium	2	ND	ND	ND		
20	Phosphate	5	1.8	3.8	2.2		
21	BOD (3 days at 27oC)	100	42.0	58.0	49.5		
22	COD	250	208.0	244.0	224.1		
23	Insecticide/Pesticide	Absent	Absent	Absent	Absent		
24	Sodium Absorption Ratio	26	6.1	24.4	11.2		
25	Manganese	2	0.1	0.9	0.2		
26	Tin	0.1	ND	ND	ND		
27	Bio Assay Test	90%	100%	100%	100%		
		survival of	survival	survival	survival of		
		fish after	of fish	of fish	fish after		
		96 hrs. in	after	after	96 hrs. in		
		100%	96 hrs.	96 hrs.	100%		
		effluent %	in	in	effluent		
			100%	100%			
			effluent	effluent			

Complied. The domestic waste water should be Domestic waste water goes to septic tank and subsequently in to ETP for disposed off through further treatment. septic tank / soak pit Detail of Domestic effluent generation is given in below table: system. Domestic April May June September July August Wastewater 2022 2022 2022 2022 2022 2022 generation m^3 Month wise 8738 9679 8751 9841 9744 9450 Per day 291 312 292 317 314 315 The maximum, minimum and average values are given below: Domestic Wastewater Values for the period April 2022 – September 2022 generation Max. Min. Avg. Domestic Wastewater 291 315 307 generation m³/d The Company should Complied. also Set up a separate We have set up a separate online fish pond using treated effluent at our ETP. online fish pond using treated effluent, ensure that the quality of treated effluent discharged into the par estuary does not have any adverse impact on the aquatic life. The effluent quality at Complied. the discharge point must The effluent quality at the ETP discharge point is regularly being monitored by also monitored the Environmental auditors appointed by GPCB. be periodically by an independent agency GPCB also monitor the treated effluent quality at regular intervals. Recent authorized by CPCB and Monitoring results of GPCB is attached as Annexure 1. report of the independent The river water quality at the discharge point is regularly being monitored by agency should be submitted to GPCB. Agencies like NIO, Pollucon Laboratories Pvt. Ltd- MoEF approved agency, Envision Enviro Technologies Pvt. Ltd, Kadam environment consultants the Ministry's Regional office -both NABET accredited have also done the monitoring during the years. at Bhopal/CPCB/GPCB Complied. vi As reflected in the EIA/EMP report, the solid ETP waste is disposed into our TSDF instead of incineration for which we have waste and ETP sludge taken permission from MoEF vide letter dated May 6, 2004 and same is also should be incinerated approved by GPCB through our CCA. We also send our incinerable waste for incinerator co-processing as per GPCB approval given through our CCA. and ash

should be disposed off in the landfill facility within the plant premises.

∨ii	The ground water quality in and around the unit and the hazardous waste storage site should be regularly monitored and the data recorded to ensure that there is no contamination of the groundwater. The destructive efficiency of the incinerator should be assessed by an agency like CPCB and a report submitted to the	Complied. Ground water quality is being checked regularly for in and around the unit and the hazardous waste storage site. Groundwater analysis study is done by MoEF approved agency Pollucon Pvt. Ltd for the last year and no contamination is observed. Complied. The destructive efficiency of the incinerator was assessed by M/s. SGS, a reputed agency in field on environmental monitoring. Report already submitted vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.
viii	Ministry. The company should comply with the provisions of coastal Regulation Zone Notification of 1991 and Coastal Zone Management Plan of Gujarat. Further, specific conditions stipulated by the Forest and Environment Department, Government of Gujarat vide its letter No. ENV-1097-2942-P dated 27th Januaryuary, 1998 for laying of pipe line for discharge of treated effluents through the estuary zone of the River Par Zone should be	Complied. Complied. Detailed compliance report is already submitted to the Ministry vide our letter our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.
ix	strictly adhered to. Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	Complied. Occupational health surveillance of the workers is being done on regular basis and record maintained as per the factory act. Details for report period is shown in below table: Medical Check-Up: Sr Employee Nos. during report period 1 Staff 2 Operators 3 Workers Various types of tests being performed are as below; A. Pre - employment check - up: 1. Vision

X	The company should develop rainwater harvesting structures to the harvest the run-off water from the rooftops and by laying a separate storm water drains system for recharge of ground water and to	2. Colour blindness 3. CBC 4. Urine 5. Height 6. Weight 7. B/P 8. Pulse 9. Habit 10. Personal History 11. Family History 12. Identification Mark 8. Annual Checkup: 1. Physical checkup 2. Vision 3. Blood 4. Urine 5. PFT 6. ECG Our occupational health center & pathology lab is equipped with necessary facilities under supervision of factory medical officer with trained three EHS persons. Complied. Company has expanded its harvesting pond capacity to 14000 KL capacity pond to harvest rain water. We are creating facility/ capacity to cater our consumption with rain harvested water with zero river drawls of water during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water. We are also constructing temporary sand bag dam on top of dam towards the end of monsoon to store additional free flowing rain water in river Par. Company has harvest 468355 KL rain water during 2022
	reduce the drawl from the river Par.	
xi	The project authorities may undertake a survey to assess the impact of gaseous emissions/pollutants on the health including respiratory and digestive system of the population within and vicinity of the plant and report submitted to the State Government and to this Ministry within six months.	The survey was carried out to assess the impact of emission/pollutants on the

xii The Company should developed a green belt in a 25% of the plant area as per the CPCB guidelines.

Complied.

Company has already developed more than 36 % of greenbelt in Atul complex Total Industrial Plot area: 1126078.27 sq.mt

Green belt area: 409030.00 sq.mt (approx. 36% of total plot area)

We planted approximately **39850** trees of difference species in report period at different location given in below table

Location	Nos. of trees
Near river bank Ghat	21350
Parnera Hill	7300
Hill side colony 5 & Outside area	2000
Secure landfill site Yard	9200
Total	39850

Photograph of Plantation

xiii As per the policy decision taken vide this Ministry's circular no. J-21011/8/98- IA II (I) dated 14th May 2002 and 23rd June, 2003, the company shall earmark a separate fund i.e. 1% of the total cost of the project (Rs. 25 Crores) for eco-development including measures welfare community measures in the project area.

Complied.

We had submitted the Eco fund earmarked for eco development to GPCB with an intimation to MoEF vide our letter NRK/ECC/GPCB/3 dated May 17, 2004. Action plan related to Eco-fund also made as per process and communicated to authority wide our letter Atul/ECC/GPCB/ECO-fund/2 dated November 2, 2004. Copy of same again submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.

	The amount shall be deposited within three months in a separate account to be maintained by GPCB.	Complied. We had submitted the Eco fund earmarked for eco development to GPCB with an intimation to MoEF vide our letter NRK/ECC/GPCB/3 dated May 17, 2004.
	The plans in this regard should be submitted to the SPCB as well as to the Ministry within three months of issue of this letter.	Complied. Action plan related to Eco-fund also made as per process and communicated to authority vide our letter Atul/ECC/GPCB/ECO-fund/2 dated November 2, 2004.
	After approval of the action plan by GPCB, the amount deposited will be released to the project authorities in two installments based on the progress of implementation.	Complied.
<i>*</i>	A. General Conditions	
i	The project authorities must strictly adhere to stipulations made by GPCB.	Complied. The company adheres to the compliances and has not exceeded the stipulation. This has been certified by our Environmental auditors, an authorized agency and nominated by GPCB; through Environmental audit every year. Latest Environmental audit report by Shree Tapi Bhramcharyashram Sabha College, for year 2021-22 was submitted vide our letter dated June 28, 2022.
ii	At no time, the emissions should not go beyond standards.	Complied. Monthly monitoring is being done by NABL approved third party. At no time, the emissions exceeded the prescribed limits during report period. The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Summary of stack results given in specific condition no. i as above.
	In the event of failure of any pollution control system adopted by the units, the respective unit should be immediately put out of operation and should not be restarted until the desired efficiency has been achieved.	

i The overall noise level in and around the plant area shall be kept well within the standard by providing noise control measures including acoustic hoods silencers, enclosures etc. on all source of noise generation.

Complied.

Acoustic hood, silencer and acoustic enclosures and insulation are provided at appropriate high noise area like turbine, DG set, vents etc.

The ambient noise levels should confirm to the standards prescribed under EPA Rules, 1989, viz. 75 (daytime) and 70bBA(night time)

Complied.

The ambient noise level is regularly monitored and its data are given in **Table 4** and **5**.

The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards. Summary is given below:

Noise level monitoring data (Day Time):

Sr No.	Location	Permissible Limits, dBA	April 2022 – September 2022		
		75	Min.	Max.	Avg.
1	66KVA substation	75	62.7	67.9	65.6
2	Opposite shed D	75	62.8	69.4	66.1
3	ETP West site	75	64.7	70.2	67.2
4	ETP North site	75	64.3	69.2	67.3
5	Near TSDF	75	54.3	59.2	57.2
6	Near Main guest house	75	60.3	68.6	65.5
7	At Wyeth Colony	75	56.8	62.5	59.7
8	Gram Panchayat Hall	75	61.5	69.5	64.3
9	Near Main Office North site	75	55.9	60.0	58.1
10	Haria Water tank	75	64.0	67.4	65.9

Noise level monitoring data (Night Time)

Sr No.	Location	Permissible Limits, dBA	Values for the period April 2022 – September 2022			
			Min.	Max.	Avg.	
1	66KVA substation	70	50.7	54.0	52.4	
2	Opposite shed D	70	52.7	55.1	53.8	
3	ETP West site	70	51.2	55.3	53.4	
4	ETP North site	70	53.2	60.7	56.2	
5	Near TSDF	70	45.8	51.9	49.9	
6	Near Main guest house	70	50.1	56.5	53.2	
7	At Wyeth Colony	70	48.9	55.9	52.6	
8	Gram Panchayat Hall	70	49.8	53.8	52.1	

		9	Near Main Office North site	70	49.5	56.7	53.2			
		10	Haria Water tank	70	50.7	53.4	52.2			
iv	The project authorities will provide adequate funds to recurring and non-recurring to	Recurr with al	leasures are already im ing cost: A separate bu I the legal requirement	dget is being stipulated b	g allocated ev y SPCB, CPC	B & MoEF c	apart from			
	implement the conditions stipulated by the Ministry of Environment and Forest as well as the State Government along with the implementation		ep of pollution control systems and facilities. Total expenditure for the rt period is given in below table.							
		Sr No	. Parameter	For the repo	g Cost (Rs. In lacs) eport period 22- September 2022					
		1	•							
	schedule for all the conditions stipulated	2	Liquid Pollution Con	2460						
	herein. The funds so	3 Environmental Monitoring and Management			19					
	provided shall not be diverted for any other	4	5			126				
	purposes.	5	Occupational health)	15					
		6	Green belt		15					
		Total			2635					
V	The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Wastes (Management & Handling) Rules, 2003.	Complied. The company complies with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016. We have valid authorization under our current CCA No. AWH-105110 for handling storage and disposal of hazardous waste. Stipulation made in CCA by GPCE are being complied. This has been certified by our Environmental auditors, an authorized agency and nominated by GPCB; through Environmental audit every year. Latest Environmental audit report by Shree Tapi Bhramcharyashram Sabha College, for year 2021-22 was submitted vide our letter dated June 28, 2022. Complied. We have valid authorization under our current CCA No. AWH-105110 fo handling, storage and disposal of hazardous waste.								
	Authorization from the GPCB must be obtained for collections /treatment/ storage/ disposal of hazardous waste.									

vi	The stipulated conditions will be monitored by the Regional office of this Ministry at Bhopal/GPCB. A six monthly compliance report and the monitored data should be submitted to them regularly.	Noted. Complied. Six monthly compliance report and the monitored data are regularly submitted to the Regional office of MoEF&CC at integrated regional office, Gandhinagar through mail and hard copy with copy marked to GPCB regularly.
Vii	The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at website of the Ministry of Environment and Forest at http://www.envfor.ni.in.	Complied. We informed the public through advertisement and by sending our EC to local Panchayat, Zila parishad, District Industrial Centre for further actions at their end.
	This shall be advertised within seven days from the date of issue of the clearance letter at least in two local newspaper that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Ministry's Regional office at Bhopal.	Complied. Advertisement was published as directed and copy of the same was submitted to Ministry.

3.0	The ministry or any competent authority may stipulate any further condition(s) on receiving reports from the project authorities. The above conditions will be monitored by the Regional Office of this Ministry located at Bhopal.	Noted.
4.0	The Ministry may revoke or suspend the clearance if implementation of any of the above conditions is not satisfactory.	Noted.
5.0	Any other conditions or alternation in the above conditions will have to be implemented by the project authorities in a time bound manner.	Noted.
6.0	The above conditions will be enforced, interalia under the provisions of the Water (Prevention and Control of Pollution) Act, 1974 the Air ((Prevention and Control of Pollution) Act, 1981 the Environment (Protection) Act, 1986, Hazardous Wastes (Management and Handling) Amendment Rules, 2003 and the Public Liability Insurance Act, 1991 along with their amendments and rules.	

			Deta		MAY. 2022 and Flue stac	JUN. 2022 k	JUL 2022	AUG. 2022	SEPT. 2022
Sr. No.	Stack Details	Paramenter	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
				Atul Eas	t Site	4			
1	furnace (Phosgene Plant)	PM	150.0 mg/Nm3	23.6	Not Running	184	14.6	13.2	18.7
2	Reactor (Phosgene	co		ND		ND	ND	ND	ND
*	plant- New)	Phosgene	0.1 ppm	ND		ND	ND	ND	ND
2	In the product	CI	To 0 - 01 - 2	Caustic Chlo 6.1	fine Plant 6.06	71	0.0	F0.	E 7E
3	Dechlorination Plant	HCI	9.0 mg/Nm3 20.0 mg/Nm3	6.27	5.9	7.1	6.3 6.47	5.9 6.06	5.75 5.6
4	Common stack of	Cl ₂	9.0 mg/Nm3	4.25	4.56	3.1	4.42	5.28	5.05
	HCI Sign unit 1&2	HCI	20.0 mg/Nm3	4.13	4.58	3.18	4.54	5.42	4.9Z
				FCB P	alnt				
5	Foul Gas Scubber	SO ₂	40.0 mg/Nm3	Not in use	Not in use	Not in use	Not in use	Not in use	Not in use
		NOx	25.0 mg/Nm3						
	T			Sulfuric Acid	A SCHOOL SECTION AND				
6	Sulfuric Acid Plant	SO ₂	2.0 kg/T	0.6	0.65	0.7	0.62	0.7	0.62
7	ChloroSulfonic Acid	Acid Mist	50.0 mg/Nm3	13.8	10.3	6.5 4.4	10.6	4.63	10.2
1	plant reactor	CI ₂	9.0 mg/Nm3 20.0 mg/Nm3	S 1000 (000)	3.8	4.4	3.9	4.63	3.9
	piditiredctor	nci	20.0 mg/Milis			4.52	4	4.76	4
8	Spray Dryer	PM	150.0	Resorcing 19.8	Not running	24.6	17.2	21.9	24.6
9	(Resorcinol Plant)	1.000	mq/Nm3	20.6	13.7	23.8	21.4	16.8	13.6
9	(Resorcinal Plant)	SO ₂	40.0 mg/Nm3	Inciner	**************************************	23.5	21.4	16.8	13.6
10	Incinerator	PM	150.0	Not running	54.2	44.7	Not running	56.3	43.8
10		SO ₂	mg/Nm3 40.0 mg/Nm3	Notrailing	10.4	12.8	Not unining	7.8	10.2
		NOx	25.0 mg/Nm3		16.2	18.4		14.9	17.1
								1,10	
11	Foul Gas Scubber	SO,	40.0 mg/Nm3	NI Pla 13.6	14.9	17.4	20.6	26.4	19.6
11	Four Gas Scubber	NOx	25.0 mg/Nm3		17.1	23.9	27.8	11.8	9.4
		IVOX	25.0 mg/mms	13.2	17.1	23.3	27.0	11.0	5.4
	70		9	2-4-D	Plant				
12	Common Scrubber,	Cl ₂	9.0 mg/Nm3	5.1	5.6	7.1	6.2	5.4	4.01
	2,4D Plant	HCI	20.0 mg/Nm3	5.24	5.75	7.29	6.37	5.55	3.9
10	Description	Phenol	200 212	ND	ND	ND	ND	ND	ND 126
13	Dryer-1	PM with Pesticide	20.0 mg/Nm3	Not Kunning	6.3	8.6	9.4	11.5	13.6
14	Dryer-2	compound PM with Pesticide	20.0 mg/Nm3	Not Running	7.2	10.1	8.75	7.9	8.7
15	Dryer-3	compound PM with	20.0 mg/Nm3	Not Running	Not Running	Not running	Not running	Not running	Not running
	1 12	Pesticide compound							
16	Dryer-4	PM with Pesticide	20.0 mg/Nm3	Not Running	Not Running	Not running	Not running	Not running	Not running
17	Dryer-5	compound PM with Pesticide	20.0 mg/Nm3	11.7	9.1	7.5	7.1	9.8	8.4
	l	compound		NBD PI	ant.				
18	Spray Dryer	PM	150.0	Not in use	Not in use	Not in use	Not in use	Not in use	Not in use
19	Scrubber S-902	Phosgene	mg/Nm3 0.1 ppm	ND	ND	ND	ND	ND	ND
	2.10000.1 0-002	HCI	20 mg/Nm3	4.1	8	6.2	7.4	6.3	7.9
20	Scrubber S-801/802	NOx	25.0 mg/Nm3	14.8	10.2	8.9	10.4	13.8	15.6

Sr. No.	Stack Details	Paramenter	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
				CP PI	ant				
21	МСРА	Cl ₂ HCI	9 mg/NM ³	Not Running					
		SO ₂	20 mg/NM ³ 40 mg/NM ³					5	
22	Fipronil	SO ₂ HCI	40 mg/NM ³ 20 mg/Nm3	Not Running					
23	lmidacloprid	NH ₃	175 mg/Nm3	Not Running					
24	Pyrathroids	SO ₂	40 mg/Nm3 20 mg/Nm3	Not Running					
25	Stack at Amine Plant		175 mg/Nm3	92	56	44	65	76	90
	L .			MPSL F	l Plant			÷	
26	Phosgene Scrubbr at	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
27	MPSL Central Scrubber at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
	IMESE			NICO p	olant				
28	Central scrubber at Nico Plant	Acetonytryle, IPA	(7.5)		Not Running				
				Ester P	lant				
29	Scrubber at Ester plant for Glyphosate	Formaldehyd e	10 mg/Nm3		Not Running				
30	Central Scrubber MCPA Plant	HCI	20 mg/Nm3	Not Running					
31		HCI	20 mg/Nm3	Not Running					
_	4	Phosgene	0.1 ppm	Atul We	1 C:1-			1	
32	Shed A05/03/44	Cl ₂	9 mg/NM ³	4.1	6.1	Not Dupping	Not Running	Not Dunping	Not Running
52	Siled Addyddy 44	HCI	20 mg/NM ³	4.21	6.27	Notruming	Notraining	Not Nullining	Notraining
33	Shed B2/12/24	Cl ₂	9.0 mg/Nm3	5.72	6.2	4.9	3.6	3.45	4.9
	Reaction Vessel	HCI	20.0 mg/Nm3	5.9	6.37	5.03	3.7	3.54	4.93
34	Shed B18/02/24 Fan	SO ₂	40 mg/NM ³	17.2	Not Running	216	17.4	23.6	23.6
		CI ₂	9 mg/NM ³	5.6		6.4	4.9	3.55	4.8
		HCI	20 mg/NM ³	5.75	Artist tide	6.58	5.06	3.65	4.93
35	Shed C5/20/15 Chlorinator	CI ₂ HCI	9.0 mg/Nm3 20.0 mg/Nm3	7.7 7.91	5.1 5.24	4.5 4.62	5.6 5.75	6.4 6.57	5.6 5.75
36	Shed D Niro Spray	PM	150.0	62.8	58.4	Not Running	Not Running	Not Running	Not Running
37	dryer No. 45 Shed D Niro Spray	PM	mg/Nm3 150.0	Not Running					
38	dryer No.50 Shed E 7/12/49	PM	mg/Nm3 150.0	Not Running	49.3	Not Running	Not Running	Not Running	Not Running
20	Spray Dryer	CI	mg/Nm3	N-+D	6.2	72		43	N-+D :
39	Shed F F6/1/15 Reaction Vessel	Cl₂ HCl	9.0 mg/Nm3 20.0 mg/Nm3	Not Running	6.2	7.3 7.5	6.9 7.15	4.2	Not Running
40	Shed G 10/8/1 (receiver)	CI ₂ HCI	9.0 mg/Nm3 20.0 mg/Nm3	Not Running					
41	Shed H 11/6/17	Cl ₂	9.0 mg/Nm3	2.15	3.15	4.6	5.9	6.2	8.2
35875	chlorinator	HCI	20.0 mg/Nm3		7.8	10.7	13.1	6.86	8.4
42	Shed K K-13/3/4	SO ₂	2.0 kg/T	0.64	0.62	0.55	0.65	0.52	0.56
	Final of Sulfuric acid	Acid Mist	50.0 mg/Nm3	18.3	14.1	116	17.8	14.8	16.2
43	Shed J15/09/25	HBr		ND	ND	ND	ND	ND	Not Running
98555	Mark Create Andrews (1988) 1985 Create Andrews (SO ₂	40 mg/NM ³	12.4	7.8	106	13.8	19.6	
	_								

Sr. No.	Stack Details	Paramenter	Permissible	Obtained	Obtained	Obtained	Obtained	Obtained	Obtained
			Limits	Value	Value	Value	Value	Value	Value
44	Shed J12/01/42	SO ₂	40 mg/NM ³	16		20.7	15.6	23.8	
	55.1	CI ₂	9.0 mg/Nm3	3.2	Not Running	7.1	5.5	6.2	Not Running
		HC1	20.0 mg/Nm3	3.28		7.3	565	6.37	
45	Shed J12/03/36	SO ₂	40 mg/NM ³	21.4		17.2	15.6		
		HCI	20.0 mg/Nm3	7.1	Not Running	10.6	3.8	Not Running	Not Running
46	Shed N Scrubber	CI ₂	9 mg/NM ³	4.6	3.3	4.9	3.6	4.8	7.4
TOTAL STREET	Fan N20/08/24	HC1	20 mg/NM ³	4.73	3.96	5.07	3.7	4.93	7.6
47	Shed N Scrubber Fan N20/02/41	SO ₂	40 mg/NM ³	14.3	6.1	Not Running	5.1	7.9	17.1
48	Sulfer Black Plant	H₂S	##-S	ND	ND	ND	Not Running	Not Running	Not Running
		NH ₃	175 mg/NM ⁹	65.6	55	44		Ta.	
		H ₂ S	77	ND	ND	ND	ND	ND	ND
49	Sulfer Dyes plant	NH ₃	175 mg/NM ³	23.8	30.2	40.2	12.8	35	24.6
50	Flavors & Fragrance	HC1	20 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
				Atul Nor	th Site				
51	N-FDH Plant Catalytic	PM	150.0 mg/Nm3	Not Running	Not Running				
	Incinerator	SO ₃	40.0 mg/Nm3						
		NOx	25.0 mg/Nm3						
		Formaldehy de	10.0 mg/Nm3						
52	PHIN Plant	Phosgene	0.1 ppm	ND	Not Running	ND	ND	ND	Not Running
53	PHIN-II Plant	HC1	20 mg/NM ³	3.5	Not Running				
54	DDS Plant (Pharma Plant)	NH ₃	175 Mg/Nm3	80	69.4	55	45		50.2
55	SPIC II Plant (DCDPS)	SO ₃		7.1	ND	17.2	4.35	40.8	18.1
56	SPIC I Plant	NH3	175 mg/Nm3	140	121	110	135	124	130
57	SPIC IV Plant	NH3	175 mg/NM ³	136	123	115	125	128	115
		SO ₃	575	7.1	7.73	8.6	7.9	11.3	9.6

				stails - E fl.	10 mms -41				
C224W40		Manufacture the content	A COMPANY OF THE PARK OF THE P	And the second of the second o	ie gas stack		Comparation seems	Service and Advanced	100000000000000000000000000000000000000
r. No.	Stack Details	Paramenter	Permissible	Obtained	Obtained	Obtained	Obtained	Obtained	Obtained
			Limits	Value	Value	Value	Value	Value	Value
				East	site				
1	FBC boiler El	РМ	100 mg/Nm3	56.7	Not Running	Not Running	Not Running	52.4	Not Runnin
		SO ₂	600 mg/Nm3	291				284	
		NOx	600 mg/Nm3	276				265	
2	FBC boiler E2	РМ	100 mg/Nm3	Not Running	62.1	56.3	54.8	Not Running	59.4
		SO _z	600 mg/Nm3		578	296	289		301
		NOx	600 mg/Nm3		580	272	268	2	279
3	FBC boiler E3	PM	100 mg/Nm3	39.6	44	40.6	49.6	44.9	51.7
		SO ₂	600 mg/Nm3	277	264	285	282	289	294
		NOx	600 mg/Nm3	286	270	266	270	270	261
4	Hot Oil Unit	PM	150.0						
4	(Resorcinol Plant)	РМ	ma/Nm3	39.7	Not Running	48.9	28.4	37.2	31.8
	(resortants r larry	SO ₂	100 ppm	4.9		15.6	5.2	4.9	5.6
		NOx	50 ppm	20.6		26.4	21.7	148	11.2
5	DG set 1010 KVA	PM	150 mg/Nm ³	33.1	48.9	33.6	40.8	46.8	61.6
•	(Standby)	SO ₂	100 ppm	6.25	3.84	4.9	584	4.84	7.4
	(Standby)	NOx	50 ppm	34.2	28.6	27.1	24.6	21.6	29.4
		TTOX	loo ppiii	West Site		27.2	24.0	22.0	20.4
6	FBC boiler W1	РМ	100 mg/Nm3	51.7	47.1	56.4	64.2	61.3	Not Runnin
		SO ₂	600 mg/Nm3	560	290	282	296	284	
		NOx	600 mg/Nm3	571	264	274	258	276	
7	Hot Oil Plant shed-B	РМ	150.0	41.2	54.8	48.9	40.6	51.9	40.7
		SO ₂	mg/Nm3 100 ppm	7.3	10.2	15.6	12.7	14.8	10.2
		NOx	50 ppm	27.4	21.6	26.4	29.3	23.7	26.1
8	Oil burner Shed B	PM	150.0	200000000000000000000000000000000000000	Not Running	Not Running	Not Running	Not Running	Not Runnin
	(Standby)		mg/Nm3						
		SO ₂	100 ppm						
		NOx	50 ppm						
9	Boiler (50 TPH 2 Nos)	РМ	50 mg/Nm3	38.7	33.2	26.8	43.6	40.2	36.2
	(New boilers) W2,W3	SO ₂	600 mg/Nm3	291	265	272	284	281	291
	14.05A(49.7)	NOx	300 mg/Nm3	282	282	266	218	270	284
		Mercury	0.03 mg/Nm3	ND	ND	ND	ND	ND	ND
10	DG set 1500 KVA	РМ	150.0	33.1	56.8	30.8	36.9	42.8	53.2
	(Stand By)	SO ₂	ma/Nm3 100 ppm	6.25	7.1	5.2	6.25	5.9	8.1
		NOx	The second secon	34.2	35.4	31.7	23.6	29.4	21.6
	L	IAOX	50 ppm	North S		31./	25.0	29,4	21.0
11	Thermic fluid heater	РМ	150.0	33.1	42.7	49.7	55.9	45.8	54.2
TT	of	I M	ma/Nm3	33.1	42.7	43.7	33.9	45.0	34.2
	DCO/DAP Plant	SO ₂	100 ppm	6.8	8.5	10.8	13.2	8.4	7.2
	AND THE PROPERTY OF STREET	NOx	50 ppm	24.9	19.6	17.2	21.5	15.4	19.8

Table 2: Fugitive Emission Monitoring details

Plant	Area	ļ l	Prescribed Limit	Results of VOCs in Milligram per NM ³						
				April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	
2,4 D	Reactor	Phenol	19	ND	ND	ND	ND	ND	ND	
	Buffer tank	Chlorine	3.0	1.5	1.6	1.8	1.6	1.9	1.4	
Resorcinol	Benzene storage tank area near vent	Benzene	15	0.5	ND	0.4	0.6	0.5	0.3	
	Near Extraction/sc rubber unit	Butyl acetate	-	110.0	ND	90.0	70.6	105.0	80.2	
Pharma	At second floor work area	Ammonia	18	3.9	5.7	6.4	5.2	7.1	4.9	
	Ammonia recovery area	Ammonia	18	4.1	5.3	7.3	6.4	8.1	7.4	
Ероху - І	At vacuum pump 2nd floor	ECH	10	2.9	3.4	4.9	3.2	4.4	4.1	
	At vessel POS 1208 G.F	ECH	10	3.3	4.8	6.2	4.6	5.1	3.8	
Shed H	At second floor work area	Nitrobenze ne	5	2.1	3.1	2.4	1.9	2.2	1.7	
Shed J	Buffer Tank	Chlorine	3	1.9	1.2	1.3	2.1	1.1	ND	

Table 3: Quality of treated effluent

Sr No.	Parameter	Results						GPCB Limits
INO.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Mg/l
1	рН	7.2	7.2	7.9	7.8	7.7	7.3	5.5 to 9.0
2	Temperature	30.3	30.3	30.1	30.3	30.9	30.5	40 °C
3	Colour (pt. co. scale)in units	50.0	40.0	60.0	50.0	60.0	70.0	
4	Suspended solids	58.0	31.0	47.0	37.0	48.0	56.0	100
5	Oil and Grease	4.6	3.8	2.9	3.9	5.2	4.4	10
6	Phenolic Compounds	0.9	1.0	0.8	0.7	0.9	0.7	5
7	Cyanides	ND	ND	ND	ND	ND	ND	0.2
8	Fluorides	0.6	0.9	1.1	0.9	0.8	0.7	2
9	Sulphides	0.5	0.8	0.7	0.8	1.2	1.6	2
10	Ammonical Nitrogen	7.1	14.8	8.1	11.3	9.6	7.9	50
11	Arsenic	ND	ND	ND	ND	ND	ND	0.2
12	Total Chromium	ND	ND	0.1	0.9	0.9	0.1	2
13	Hexavelent Chromium	ND	ND	ND	ND	ND	ND	1
14	Copper	0.1	0.3	0.1	0.2	0.2	0.1	3
15	Lead	ND	ND	ND	ND	ND	ND	2
16	Mercury	ND	ND	ND	ND	ND	ND	0.01
17	Nickel	ND	ND	0.1	0.1	0.1	0.1	5
18	Zinc	0.4	0.6	0.2	0.3	0.2	0.3	15
19	Cadmium	ND	ND	ND	ND	ND	ND	2
20	Phosphate	1.8	3.8	2.1	1.8	2.1	1.9	5
21	BOD (3 days at 27°C)	43.0	48.0	42.0	54.0	58.0	52.0	100
22	COD	216.0	236.0	208.0	231.0	244.0	210.0	250
23	Insecticide/Pesticide	Absent	Absent	Absent	Absent	Absent	Absent	Absent
24	Sodium Absorption Ratio	6.1	24.4	13.5	7.0	8.6	8.0	26
25	Manganese	0.1	0.9	0.1	0.1	0.1	0.1	2
26	Tin	ND	ND	ND	ND	ND	ND	0.1
27	Bio Assay Test	100% survival of fish after 96 hrs. in 100% effluent	100% survival of fish after 96 hrs. in 100% effluent	90% survival of fish after 96 hrs. in 100% effluent %				
	Note: ND is Not [Detected.						

Table 4: Noise level monitoring data (Day Time)

Sr	Location	Noise L	loise Level, dBA					
No.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Limits, dBA
1	66KVA substation	66.2	67.9	66.3	67	62.7	64	75
2	Opposite shed D	64.6	66.7	67.6	69.4	65.9	62.8	75
3	West site ETP	67.5	70.2	68.2	67.2	65.9	64.7	75
4	North site ETP	69.2	67.3	69.1	67.8	66.4	64.3	75
5	Near TSDF	57.8	54.3	56.9	58.2	57.3	59.2	75
6	Near main guest house	68.6	66.5	68.2	66.9	60.3	62.8	75
7	At wyeth colony	58.1	56.8	58.8	61.7	60.8	62.5	75
8	Gram panchayat hall	69.5	67.9	63.2	61.5	62.4	61.8	75
9	Near main office North site	57.3	55.9	57.4	59.4	58.7	60.0	75
10	Haria water tank	64	67.4	65.5	66.8	66.8	64.9	75

Table 5: Noise level monitoring data (Night Time)

Sr	Location	Noise L	_evel, dBA					Permissibl
No.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	e Limits, dBA
1	66KVA substation	51.5	50.7	53.6	51.9	52.9	54	70
2	Opposite shed D	53.5	55.1	53.7	52.7	53.4	54.5	70
3	West site ETP	51.2	54.6	52.4	54.2	55.3	52.9	70
4	North site ETP	60.7	58.4	55.1	54.6	55.4	53.2	70
5	Near TSDF	50.6	50.9	51.9	50.8	49.7	45.8	70
6	Near main guest house	53.2	56.5	54.3	52.1	50.1	53.4	70
7	At wyeth colony	48.9	51.3	52.6	53.6	55.9	53.8	70
8	Gram panchayat hall	51.6	49.8	53.8	51.2	53.7	52.6	70
9	Near main office North site	50.2	49.5	52.9	54.8	55.3	56.7	70
10	Haria water tank	52.8	53.2	51.2	53.4	52.4	50.7	70

Annexure 1: GPCB results for treated effluent water

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Sample ID: 360650 - Analysis Completion: 03/10/2022

Dyes and Dye-Intermediates / LAB Inward: 59464

Gujarat Pollution Control Board, Vapi C5/124, GIDC Vapi, Near Hotel Pritam, Vapi - 396 195 Tele:(0260) 2432089

TEST REPORT

Test Report No.: 59464 Date: 03/10/2022

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc., AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka: Valsad, District: Valsad, GIDC: Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : COM-On Complaint)

4. Sample Collected By : C.C Patel,SO 5. Quantity of Sample Received : 5 lit 6. Code No. of the Sample : 360650

7. Date & Time of Collection & Inwarding : 19/09/2022, (1210 to 1210) & 20/09/2022

8. Date of Start & Completion of Analysis : 20/09/2022 & 03/10/2022

9. Sampling Point : ## Final Outlet of the ETP ~ Final Outlet of Central ETP

10. Flow Details (Remarks) : Yes

11. Mode of Disposal : Into Estury of River Par through pipeline

12. Ultimate Receiving Body : Estuary zone of river par

13. Temperature on Collection : 32 & pH Range on pH Strip : @ 7 to 8 On pH strip

14. Carboys Nos for : barcode & Color & Appearance :Brownish

15. Water Consumption & W.W.G (KLPD) : Ind :27956.000 , Dom :938.000 & Ind :23774.000 , Dom :939.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	IS: 3025 (Part - 9) - 1984(Reaffirmed 2006)	Ambient oC - 60 oC	32
2	pH	pH Units	4500 H+ B APHA Standard Methods 23rd edi.2012	1 – 14 pH value As or	6.90
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	85
4	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 - 10000 mg/L	84
5	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standar	1 - 2000 mg/l.	6.72
6	Chemical Oxygen Demand	mg/l	APHA (23rd Edition)- 5220 B Open Reflux Method-20	5.0- 50000 mg/l	194
7	Oil & Grease	mg/l	Liquid - Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	1.6
8	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 - 50 mg/l	0.41
9	Sulphide	mg/l	APHA (23rd Edi.)4500-s2-F -iodometric Method	1-500.0 mg/l	1.1
10	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmer	05-50000 mg/l	56

Laboratory Remarks: Freeze By:279-R.O_279 Dt.: 03/10/2022

R. N. Patel, SSO

Engretue

Field Observation: sample collected as per is:3025(part-1)1987(re 2019)

Note: 1. * - These parameters are NOT covered under the scope of NABL

- 2. The results refer only to the tested samples and applicable parameters. Endorsement of products is neither inferred nor implied.
- 3. Samples will be destroyed after 10 days from the date of issue of test report unless otherwise specified.
- 4. This report is not to be reproduced wholly or in part or used in any advertising media without the permission of the Board in writing.
- 5. The Board is not responsible for the authenticity for the samples not collected by the Board's officials.
- Total liability of our laboratory is limited to the invoiced amount. Any dispute arising out of this report is subject to Guiarat Jurisdiction only.
- 7. Permissible Limits: as per Schedule VI of EPA Rules, 1986 as ammended by Second and Third ammendment 1993 for Effluents
- 8. Physicochemical and microbiological parameters, Std.Methods for Water and Waste Water- 23rd Edition by APHA.
- 9. Bioassay test (for toxicity) -IS:6582:Part-2:2001, Reaffirmed 2007.

04/10/2022 08:14:55

Atul Ltd

Project: Expansion of Pesticide and Synthetic Organic Chemicals manufacturing unit EC Compliance Report for EC F. No. J - 11011/85/2009 - IA II (I) dated May 13, 2009 Report Period: April 2022 – September 2022

Sr No.	Condition	Compliance								
A. Sp	ecific Conditions									
i	Industrial Waste water generation shall not exceed 17,283 m³/d.	Complied. However, since we have another EC granted in 2021 for expansion& addition of new products. we request to consider latest figures given in same. According to specific condition of EC F No. J 11011/108/2015-IA-II-(I) dated August 03, 2021, Industrial waste water generation shall not exceed 20,514 m³/d. The average wastewater generation for the report period is 9236 m³/day only which is well within the limit. Detail break up is given in below table:								
			April 2022	Ма 202		June 2022	July 2022		August 2022	September 2022
		Month wise	284435	29	5770	251593	28250	00	28955	286594
		Per day	9481	95	41	8386	9113		9340	9553
		wastewater ge		ent	beyon Stipul	d the stipu	lated val	ue. S	Summar ne period	
					value	-	April 20 Min.	_		mber 2022 Avg.
		Wastewat m³/d	er generatic	n	20514	4	8386	_		9236

23 m³/d High COD effluent shall be incinerated.

Complied.

Since we have another EC granted in 2021 for expansion& addition of new products. we request to consider latest figures given in same. According to No. 6 of EC F No. J 11011/108/2015 - IA - II - (I) dated August 03, 2021. "High TSD effluent of 443 KLD will be taken to MEE, 99 KLD of high COD w/w will be incinerated in incinerator. Low COD, low TDS effluent is 27143 KLD; out of which 19379 KLD will be treated in ETP and 7764 KLD will further passed through RO after treatment followed by MEE " Accordingly the High TDS and High COD waste water quantity are now 443 KLD and 99 KLD respectively.

We have been segregating high COD streams (COD >50000 ppm) and same is being taken for recovery to get economic benefit. Rest lean effluent of COD <2000 ppm is finally sent to ETP for treatment.

All the high COD streams are being diverted to recovery system rather than incineration. Streams containing Ammonia, Methanol, Copper, Solvents, Phenolics, etc. are taken for the recovery of the same and reused. Hence, there is **no High COD Waste water stream remaining** and therefore no incineration was done during this period.

97 m³/d High TDS effluent shall be evaporated through MEE.

Complied.

As stated above, **the High TDS effluent quantity is now 443 KLD.** The average **122** KLD high TDS waste water was evaporated in MEE during report period. Detail break up is given in below table:

	Break up of effluent KI/Day								
Sr No.	Month	High TDS/COD	Low TDS/COD	Total Effluent generation					
1	April - 2022	118	9363	9481					
2	May -2022	117	9424	9541					
3	June - 2022	102	8284	8386					
4	July - 2022	140	8973	9113					
5	August - 2022	130	9210	9340					
6	September - 2022	126	9427	9553					

Total quantity of 17283 m³/d shall be treated at company's own effluent treatment plant.

Complied.

According to specific condition of EC F No. J 11011/108/2015-IA-II-(I) dated August 03, 2021, Industrial waste water generation shall not exceed 20,514 $\,\mathrm{m}^3$ /d.

The average 9236m³/day wastewater was treated in the company's own effluent treatment plant during the reporting period which is well within the limit.

Final Discharge of Treated effluent is being discharge into river par through 4 km line constructed by Complied.

Final discharged effluent meeting with standards stipulated by state pollution control board is being discharged into river Par through 4 km line.

M/s Atul.

Ammonia bearing effluent shall be subject to ammonia recovery before mixing with normal effluent stream.

Complied.

Ammonia bearing effluent streams generated from 4,4 DDS production is recovered by stripping in series of packed column. The ammonia contained water from the stripper is condensed in condenser and recovered ammonia is being recycled back in production of 4,4 DDS. Details are given in below table:

Recover Ammonia	April 2022	May 2022	June 2022	July 2022	_	September 2022	Total
(MT)	454	396	276	306	390	193	2015

Phenol will be recovered from phenol containing effluent.

Complied.

Distillation column has been installed for phenol recovery. Resin tower are installed to recover phenol. Phenol recovery data is given in below table:

	April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Total
DCP crude distilled	1700	1736	1745	1835	1802	1765	10583
2,4DCP recovered	1482	1508	1533	1610	1584	1551	9267
2,6DCP recovered	107	108	114	120	117	113	679
OCP/ Residue	111	120	98	106	101	101	637

The treated effluent shall confirm the discharge norms.

Complied.

The treated effluent is meeting with standards stipulated by state pollution control board's discharge norms and values of various parameters of treated effluent is given in $Table\ 1$.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

S	Parameter	r Limit Values for the period			
No.		Mg/l	April 2022	2 – Septemb	er 2022
			Min.	Max.	Avg.
1	рН	5.5 to 9.0	7.3	7.9	7.5
2	Temperature	40 °C	30.1	30.9	30.4
3	Colour (pt. co. scale)in units		40.0	70.0	55.0
4	Suspended solids	100	31.0	58.0	46.1
5	Oil and Grease	10	2.9	5.2	4.1
6	Phenolic Compounds	5	0.7	1.0	0.8
7	Cyanides	0.2	ND	ND	ND
8	Fluorides	2	0.7	1.1	0.8
9	Sulphides	2	0.5	1.6	0.9
10	Ammonical Nitrogen	50	7.2	14.8	9.8
11	Arsenic	0.2	ND	ND	ND

		_			
12	Total Chromium	2	0.1	0.1	0.1
13	Hexavelent Chromium	1	ND	ND	ND
14	Copper	3	0.3	0.2	0.1
15	Lead	2	ND	ND	ND
16	Mercury	0.01	ND	ND	ND
17	Nickel	5	0.1	0.1	0.1
18	Zinc	15	0.1	0.4	0.3
19	Cadmium	2	ND	ND	ND
20	Phosphate	5	1.8	3.8	2.2
21	BOD (3 days at 27°C)	100	42.0	58.0	49.5
22	COD	250	208.0	244.0	224.1
23	Insecticide/Pesticide	Absent	Absent	Absent	Absent
24	Sodium Absorption Ratio	26	6.1	24.4	11.2
25	Manganese	2	0.1	0.9	0.2
26	Tin	0.1	ND	ND	ND
27	Bio Assay Test	90% survival of fish after 96 hrs. in 100% effluent %	100% survival of fish after 96 hrs. in 100% effluent	100% survival of fish after 96 hrs. in 100% effluent	100% survival of fish after 96 hrs. in 100% effluent

The domestic Complied. effluent shall be disposed off through septic tank/soak pit.

Domestic waste water goes to septic tank and subsequently in to ETP for further treatment.

Detail of Domestic effluent generation is given in below table:

Domestic Wastewater generation m ³	April 2022	May 2022	June 2022	r -	August 2022	September 2022
Month wise	8738	9679	8751	9841	9744	9450
Per day	291	312	292	317	314	315

The maximum, minimum and average values are given below:

Domestic Wastewater generation	Values for the period April 2022 – September 2022				
	Min.	Max.	Avg.		
Domestic Wastewater generation m³/d	291	315	307		


ii	The process emissions (SO ₂ , NH ₃ , Cl ₂ , and HCl, shall be scrubbed with Scrubbers.	Complied. All the SO ₂ , NH ₃ , Cl ₂ , and HCl vents are being routed through adequate and properly designed scrubbing system. Furthermore, most of the process and flue gas stacks have been monitored through online monitoring system and also connected to GPCB and CPCB website.
	The emission shall be dispersed through stack of adequate height as per CPCB standard.	Complied. The emission is dispersed through adequate height of stacks as per CPCB standard as given below: For Incinerator: Minimum stack height shall be 30 meters above ground. For Boilers: Stack Height H=14(Q) ^{0.3} Details of stack results along with its height data is given in Table 2. Gaseous emissions from process units are monitored regularly on monthly basis.
	The gaseous emission from the DG sets shall be dispersed through stack of adequate height as per CPCB standards.	During the report period no case varies from standard. Complied. The gaseous emission from the DG sets is being dispersed through stack of adequate height as per CPCB standards given below: The minimum height of stack is provided using the following formula (ref. CPCB): H = h+0.2x√KVA H =Total height of stack in meter
		h =Height of the building in meters where the generator set is installed KVA = Total generator capacity of the set in KVA However, DG sets are being used only during emergency startups.
	Acoustic enclosures shall be provided to the DG set to control the noise pollution.	Complied. All DG sets are having inbuilt acoustic enclosures to control the noise pollution and meeting the prescribed norms.
iii	The company shall upload the status of compliance of stipulated environmental clearance conditions including results of monitored data on its web site.	Complied. The status of compliance of stipulated environmental clearance conditions including results of monitored data is posted on our web site www.atul.co.in
	Status of compliance of stipulated environmental clearance conditions to be sent to Regional office of MoEF, the respective Zonal office of CPCB and the state pollution	Compliance status report to the stipulated environmental clearance conditions are regularly submitted to the regional office of MoEF, zonal office of CPCB and state pollution control board.

control board.

The criteria pollutant levels namely; SPM. RSPM, SO2, NOx (ambient levels as well as Stack emissions) or critical sectorial parameters like VOC, indicated for the project shall be monitored and displayed at a convenient location near the main gate of company in the public domain.

Complied.

The critical pollutants parameters namely; SPM, RSPM, SO₂, NOx are monitored regularly on monthly basis and displayed at board at the company entrance.

Details of stack results, ambient air monitoring and VOC measured in fugitive emission is given in **Table 2, 3 and 4** respectively.

The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Summary of Process Stack results:

Sr No.	Parameter	Standard values as	Unit	Values for the period April 2022 – September 2022		
		per CCA		Min.	Max.	Avg.
1	SO2	40	mg/Nm³	5.1	26.4	16.1
2	SO2 (kg/T)	2	kg/T	0.5	0.7	0.6
3	NOx	25	mg/Nm³	8.9	27.8	15.6
4	HCI	20	mg/Nm³	3.1	13.1	5.8
5	PM	150	mg/Nm³	13.2	62.8	39.7
6	PM with Pesticide compound	20	mg/Nm ³	6.3	13.6	9.1

Summary of flue gas stack results:

Sr No.	Parameter	Standard values as	Unit	Values for the period April 2022 – September 2022		
		per CCA		Min.	Max.	Avg.
1	PM	100	mg/Nm³	39.6	64.2	52.5
2	PM (New Boiler 50 TPH)	50	mg/Nm ³	26.8	43.6	36.4
3	SO2	600	mg/Nm ³	264.0	578.0	309.8
4	NOx	600	mg/Nm ³	258.0	580.0	306.2
5	NOx (New Boiler)	300	mg/Nm ³	218.0	284.0	264.0

Summary of Ambient Air Quality results:

Station	Parameter	Limit micro -	Values for the period April 2022 – September 2022			
		gm/NM³	Min.	Max.	Avg.	
66 KV	PM2.5	60	29.0	34.0	31.8	
	PM10	100	45.0	54.0	50.2	
	SO ₂	80	13.7	22.6	18.3	
	NO ₂	80	24.7	27.9	26.1	
	Ammonia	400	ND	ND	ND	
	HCI	200	4.1	6.5	5.3	
Opposite	PM2.5	60	10.3	32.8	22.2	
Shed D	PM10	100	15.2	54.8	39.0	
	SO ₂	80	10.1	19.8	14.7	
	NO ₂	80	12.7	25.6	18.2	
	Ammonia	400	ND	ND	ND	
	HCI	200	ND	ND	ND	
West site ETP	PM2.5	60	26.0	36.0	31.5	
	PM10	100	39.0	59.0	51.8	
	SO ₂	80	11.6	23.7	19.9	
	NO ₂	80	24.9	27.1	26.2	
	Ammonia	400	ND	ND	ND	
	HCI	200	ND	ND	ND	
North site ETP	PM2.5	60	28.0	34.0	30.8	
	PM10	100	42.0	58.0	51.7	
	SO ₂	80	15.3	20.6	18.0	
	NO ₂	80	17.3	31.2	26.1	
	Ammonia	400	3.4	4.6	4.1	
	HCI	200	ND	ND	ND	
TSDF	PM2.5	60	27.0	35.0	31.3	
	PM10	100	38.0	54.0	49.3	
	SO ₂	80	12.0	18.5	16.1	
	NO ₂	80	22.8	28.4	26.0	
	Ammonia	400	2.6	3.9	3.2	
	HCI	200	ND	ND	ND	

Main Guest	PM2.5	60	14.6	34.8	23.4
House	PM10	100	37.6	54.8	45.2
	SO ₂	80	9.8	20.4	15.1
	NO ₂	80	12.4	29.3	18.4
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Wyeth Colony	PM2.5	60	25.0	32.0	29.3
	PM10	100	36.0	57.0	49.3
	SO ₂	80	14.1	20.7	18.1
	NO ₂	80	24.1	30.4	27.7
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Gram	PM2.5	60	14.3	34.6	24.1
panchayat	PM10	100	31.9	52.6	41.6
hall	SO ₂	80	7.6	21.9	13.1
	NO ₂	80	11.7	25.9	19.1
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Main office,	PM2.5	60	11.4	35.6	22.9
North site	PM10	100	37.9	52.0	45.1
	SO ₂	80	8.9	21.3	14.0
	NO ₂	80	11.3	25.2	18.7
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Haria water	PM2.5	60	12.5	31.5	21.7
tank	PM10	100	37.3	55.3	45.5
	SO ₂	80	10.6	19.7	14.3
	NO ₂	80	11.8	25.3	18.7
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND

Summary of VOC results :

Plant	Area	Parameter	Prescribed Limit Mg/nm3	Values of VOCs in Milligram per NM³ for the period April 2022 – September 2022			
				Min.	Max.	Avg.	
2,4 D	Reactor	Phenol	19	ND	ND	ND	
	Buffer tank	Chlorine	3	1.4	1.9	1.6	
Resorcinol	Benzene storage tank area near vent	Benzene	15	0.3	0.6	0.5	
	Near Extraction /scrubber unit	Butyl acetate	-	70.6	110.0	91.2	

			Pharma	At second floor work area	Ammonia	18	3.8	7.1	5.5
				Ammonia recovery area	Ammonia	18	4.1	8.1	6.4
			Epoxy - I	At vacuum pump 2nd floor	ECH	10	2.9	4.9	3.8
				At vessel POS 1208 G.F	ECH	10	3.3	6.2	4.6
			Shed H	At second floor work area	Nitrobenzen e	5	1.7	3.1	2.2
			Shed J	Buffer Tank	Chlorine	3	1.1	2.1	1.5
٧	The	company	Complied.						

shall Authorization for Collection; Storage

and Disposal of Hazardous waste under the hazardous waste management (Handling and boundary trans movement rule -2008) for management of hazardous waste and prior from permission GPCB shall be obtained for disposal of solid waste in the TSDF.

obtain We have obtained authorization for our own TSDF through GPCB notification no. GPCB/HAZ/GEN - 55/9647 dated March 13, 2000 and NOC no. CTE - 65621 dated November 19, 2004. Also we have valid authorization under our current CCA No. AWH - 105110 for handling, storage and disposal of hazardous waste.

	The concerned	Compiled.				
	company shall	A well designed Fire hydrant system is adequate and as per standards.				
	undertake	Fire hydrant Network details:				
	measures for the	• Four full - fledged fire hydrant system in the company Water Storage				
	firefighting facility	Capacity - 50 million Liters				
	in case of	Total length of hydrant line – 15 km				
	emergency.	Fire Fighting Equipment				
		。DCP1350 o CO ₂ 776 Foam: 05Trolly				
		Fire Tenders				
		o One fire tender having 1800 Lit water capacity				
		 Second multipurpose fire tenders having 5000 Lit water &500Foam 				
		 Third Multipurpose tender having facility of DCP - 500 Kg, Foam 				
		– 500 lit and Water – 4500 Lit.				
		SCBA sets – 35nos.				
		• Emergency alarm system – 532 nos. points spread across the company.				
		Fire station manned round the clock with Siren and Annunciation System.				
		Regular Testing on every Monday.				
		Smoke detectors in the office and labs.				
		Auto water deluging system at critical reactors.				
		Auto water sprinkler system at tank farms.				
vi	The project	Complied				
VI	The project authorities shall	Complied. We are complying with all the requirement of MSIHC rule 1989 as amended in				
	strictly comply	, , ,				
	with the rules and					
	with the rules and Onsite emergency plan, Licenses, reporting, etc. guidelines under					
	manufacturing,	The company complies with all stipulated norms of act made in CCA by GPCB are				
	storage and	being complied.				
	import of	Latest Environmental audit report by Shree Tapi Bhramcharyashram Sabha College,				
	hazardous chemicals rule	for year 2021-22 was submitted vide our letter dated June 28, 2022.				
	1989 as amended					
	in Octoberober,					
	1994 and January,					
	2000.					
	All Transportation	Complied.				
	of Hazardous	Transportation of Hazardous chemicals are being done as per the MVA rule 1989.				
	chemicals shall be	TREM (Transport Emergency) card and MSDS of chemicals are provided to				
	as per the MVA,	transporter.				
	1989.					
∨ii	The company	Complied.				
VII	The company shall undertake	All the liquid ingredients are being charged through measure vessels and/or flow				
1		meters to control on quantity as per the stoichiometry. All the solid ingredients are				
	meters to control on quantity as per the stoichiometry. All the solid ingredien charged after proper weighment only. All these meters and weighing machin					
	measures:	calibrated and records are maintained.				
	Metering and	camprated and records are maintained.				
	control of					
	quantities of					
	active ingredients					
	to minimize waste.					

	D ()	
	Reuse of by products from the process as raw materials or as raw material substitutes in other processes.	Complied. Sodium sulfate, sodium thio sulphate, brine, MEE salt, sodium hypochlorite, copper hydroxide, spent acid, etc. are few by - products from the process which are being sold for using the same either as raw material or as substitute to raw materials. Also, fly ash and gypsum are being used as raw material for brick manufacturing. Sodium hypochlorite, sodium hydro sulfide, etc. are being used as raw material in other processes.
	Use of automated filling to minimize spillage.	Complied. Automated filling system for our agro products, polymers, resorcinol, and dyes for small and bulk packing is provided to minimize spillage.
	Use of 'close feed' system into batch system.	Complied. Chemicals and solvents are handled in close handling system through pipe lines only.
	Venting equipment through vapor recovery system.	Complied. All the reactors are equipped with vents/stacks, which are connected to either vapor recovery system consisting of condensers, ejector/vacuum pumps and/or scrubbers. Genoscorb technology for solvent vapor recovery is also installed and working perfectly.
	Use of high pressure hoses for equipment cleaning to reduce wastewater generation.	Complied. Many equipment like reactors, spray dryers, condenser wherever necessary are being cleaned with high pressure sprayer/jet to reduce waste water generation.
viii	Fugitive emissions in the work zone environment, product, raw material storage area shall be regularly monitored. The emission shall conform to the limits imposed by I.	Complied. Fugitive emissions in the work zone environment and raw material storage area is being regularly monitored by NABL approved third party. Data for the reporting period is given in Table 4. Besides this online monitors in work area for parameters like Chlorine, HCl and Phosgene are also installed. The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Summary is given in specific condition iii.
ix	The project authority shall provide chilled brine solution in secondary condenser for condensation of the VOCs.	Complied. All the VOCs/solvent recovery systems are attached with chilled brine solution in secondary condenser for condensation of VOCs.

	The project	Complied.
	authority shall	On an average solvent recovery is 96%.
	ensure that	
	solvent recovery	
	shall not be less	
	than 95%	
	The VOC	Complied.
	monitoring shall	We are monitoring VOC as well as other chemicals in work area as per Factories Act
	be carried in the	and records are being maintained in Form No. 37.
	solvent storage	j
	area and data	VOC monitoring in solvent storage area is being done and data are submitted
	submitted to the	through EC compliance report.
	Ministry.	
		Data for the report period is given in Table 4 .
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Solvent	Complied.
X		•
	management shall	All the reactors handling solvent are connected/attached with chilled brine
	be as follows:	condenser for solvent recovery.
	Reactor shall be	
	connected to	
	chilled brine	
	condenser system.	
	Reactor and	Complied.
	solvent handling	All the reactors and pumps handling solvent are equipped with mechanical seals to
	pump shall have	prevent leakages.
	mechanical seals	
	to prevent	
	leakages.	
	The condensers	Complied.
	shall be provided	The condensers provided are properly designed with respect to HTA and Residence
	with sufficient	time to achieve more than 95 % recovery. As mentioned above, average 96 %
	HTA and	solvent recovery is being achieved.
	residence time so	
	as to achieve more	
	than 95%	
	recovery.	
	Solvents shall be	Complied.
	stored in a	Solvents are stored in tank farms in separate tanks with proper earthing, flame
	separate space	arresters, lightening arresters, fencing, Fire hydrant system, Fire extinguishers, flame
	specified with all	proof equipment, etc. safety measures.
	safety measures.	
	Proper earthing	Complied.
	shall be provided	Double earthing is provided and regular checking and testing of the same is being
	in all the electrical	done and recorded.
	equipment	
	wherever solvent	
	handling is done.	
		Compalied
	Entire plant shall	Complied.
	be flame proof.	Plants are equipped with Jumpers, flame proof electrical fittings and proper earthing
		as per the Hazardous area classification of PESO.

	The solvent storage tanks shall be provided with breather valve to prevent	Complied. Breather valves have been provided to all the solvent storage tanks to minimize the loses.		
xi	loses. Hazardous chemicals shall be stored in tanks in tank farms, drums, carboys etc.	Complied. Hazardous chemicals are being stored in tanks, drums and carboys considering the storage quantity and chemical stored.		
	Company shall develop an area of 33% green belt and selection of plant species shall be as per the guideline of CPCB.	Complied. Company has already developed more than 36 % of greenbelt in Atul complex Total Industrial Plot area: 1126078.27 sq.mt Green belt area: 409030.00 sq.mt (approx. 36% of total plot area) We planted approximately 39850 trees of difference species in report period at different location given in below table		
		LocationNos. of treesNear river bank Ghat21350Parnera Hill, Chichwada road7300Hill side colony 5 & Outside area2000Secure landfill site Yard9200Total39850		

Plantation at Parnera Hill

χij The company shall harvest surface as well as rain water from building and storm water drain to recharge the use the same water for the various activities of the project to fresh conserve water.

Complied.

Company has expanded its harvesting pond capacity to 14000 KL capacity pond to harvest rain water

the roof tops of the | We are creating facility/ capacity to cater our consumption with rain harvested water with zero river drawls of water during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water.

ground water and | We also construct temporary sand bag dam on top of dam towards the end of monsoon to store additional free flowing rain water in river Par.

> In addition to above, surface runoff water and roof top water is used to recharge bore wells.

Company has harvest 468355 KL rain water during 2022.

xiii Occupational health surveillance of the workers shall be done on a regular basis and records | Medical Check - Up: maintained as per

the Factories Act.

Complied.

Occupational health surveillance of the workers is being done on regular basis and record maintained as per the factory act. Details for the report period is shown in below table:

Sr No.	Employee	Nos. during report period
1	Staff	1175
2	Operators	
3	Workers	

Various types of tests being performed are as below;

A. Pre - employment check - up:

- 1. Vision
- 2. Colour blindness
- 3. CBC
- 4. Urine
- 5. Height
- 6. Weight
- 7. B/P
- 8. Pulse
- 9. Habit
- 10. Personal History
- 11. Family History
- 12. Identification Mark

B. Annual Checkup:

- 1. Physical checkup
- 2. Vision
- 3. Blood
- 4. Urine
- 5. PFT
- 6. ECG

Our occupational health center & pathology lab is equipped with necessary facilities under supervision of factory medical officer with trained three EHS persons.

B. Ge	eneral Conditions:	
i•	The project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board.	Complied. The company adheres to the compliances and has not exceeded the stipulation. This has been certified by our Environmental auditors, an authorized agency and nominated by GPCB; through Environmental audit every year. Latest Environmental audit report by Shree Tapi Bhramcharyashram Sabha College, for year 2021-22 was submitted vide our letter dated June 28, 2022.
ii	No further expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	Complied. Any expansion will be done only after getting EC.
iii	At no time, the emissions shall exceed the prescribed limits.	Complied. Monthly monitoring is being done by NABL approved third party. At no time, the emissions exceeded the prescribed limits during report period. Summary of stack results given in specific condition no. iii.

	In the event of	'
	failure of any	No such case happened during compliance period. Whenever such incident of failure
	pollution control	of pollution control system happened, we will stop the operation and rectify the
	system adopted	problem and then only restart.
	by the units, the	
	unit shall be	
	immediately put	
	out of operation	
	and shall not be	
	restarted until the	
	desired efficiency	
	has been	
	achieved.	
i∨	The Gaseous	Complied.
	emission (NOx,	The gaseous emissions (SO ₂ , NOx, and HCI) and particulate matters from various
	HCl, SO2 and	process units confirms to the standards prescribed by GPCB through CCA.
	SPM) and	Details of stack results for the compliance period is given in Table 2 .
	Particulate matter	Detaile of statistic searce for the searce period to give in page 2.
	along with RSPM	
	levels from various	
	process units shall	
	conform to the	
	standards	
	prescribed by the	
	concerned	
	authorities from	
	time to time.	
	At no time, the	·
	emission levels	We will ensure that at no time emission will go beyond the standards. The maximum
	shall go beyond	values during the compliance period confirms that at no time the emission level went
	the stipulated	beyond the stipulated standards.
	standards.	Summary of stack results given in specific condition no. ii.
	stariaaras.	Summary of stuck results given in specific condition no. ii.
	In the event of	Complied.
	failure of pollution	No such case happened during compliance period. Stack monitoring for SO ₂ , NOx
	control system(s)	and SPM has been carried out and details given in Table 2 . Whenever such incident
		of failure of pollution control system happened, we will stop the operation and rectify
	adopted by the	the problem and then only restart.
	unit, the	and problem and aren only restart.
	respective unit	
	shall not be	
	restricted until the	
	control measures	
	are rectified to	
	achieve the	
	desired efficiency.	
	Stack monitoring	
	for SO ₂ , NOx and	
	SPM shall be	
	carried.	
	Sairioui	

V	The Location of	Complied.			
*	ambient air quality	·			
		The Location of ambient air quality monitoring stations had been decided in			
	monitoring	consultation with GPCB so that at least one station is installed in the up wind and			
	stations shall be	downwind direction as well as where maximum ground level concentration are			
	decided in	anticipated. The same had been shown to authority like SPCB, CPCB & MoEF during			
	consultation with	their visit to our factory.			
	state pollution				
	control Board and	List of our ambient air monitoring station is given below:			
	it shall be ensured	No. Location			
	that at least one	1 66 KVA GEB substation			
	station is installed	2 Opposite shed D			
	in the up wind and	3 West site ETP			
	downwind	4 North site ETP			
	direction as well	5 Near TSDF			
	as where				
	maximum ground	3			
	level	7 At wyeth colony			
	concentration are	8 Gram panchayat hall			
		9 Near main office, North site			
	anticipated.	10 Haria water tank			
		Details of ambient air quality results is given in Table 3 .			
vi	Dedicated	Complied.			
	Scrubbers and	Dedicated scrubbers with stacks of appropriate height (as per the central pollution			
	stacks of	control board guideline) have been provided to control the emission from various			
	appropriate height	vents. Details of stack results along with its height data is given in Table 2 .			
	as per the central	vertes. Details of stack results along with its fleight data is given in fable 2.			
	pollution control				
	•				
	9				
	shall be provided				
	to control the				
	emission from				
	various vents.				
	The scrubber	Complied.			
	water shall be	The scrubber water is being sent to ETP for further treatment.			
	sent to ETP for				
	further treatment				
	or sell to actual				
	end users.				
vii	The overall noise	Complied.			
	level in and	In built acoustic enclosure, silencer and insulation are provided on all source of noise			
	around the plant	generation to keep over all noise level within the stipulated standards like turbine,			
	area shall be kept	DG set, etc.			
	well within the	DG Set, etc.			
	standard by				
	providing noise				
	control measures				
	including acoustic				
	hoods silencers,				
	enclosures etc. on				
	all source of noise				
	generation.				

The ambient noise level shall confirm to the standards prescribed under Environment(
Protection) Act - 1986 Rules,1989 viz 75 dBA (day time) and 70 dBA (night time)

Complied.

The ambient noise level confirm to the standard prescribed under EPA. The same is being regularly monitored and its details are given in **Table 5 and 6**.

The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards. Summary is given below:

Noise level monitoring data (Day Time):

Sr No.	Location	Permissible Limits, dBA	Values for the period April 2022 – September 202		ber 2022
		75	Min.	Max.	Avg.
1	66KVA substation	75	62.7	67.9	65.6
2	Opposite shed D	75	62.8	69.4	66.1
3	ETP West site	75	64.7	70.2	67.2
4	ETP North site	75	64.3	69.2	67.3
5	Near TSDF	75	54.3	59.2	57.2
6	Near Main guest house	75	60.3	68.6	65.5
7	At Wyeth Colony	75	56.8	62.5	59.7
8	Gram Panchayat Hall	75	61.5	69.5	64.3
9	Near Main Office North site	75	55.9	60.0	58.1
10	Haria Water tank	75	64.0	67.4	65.9

Noise level monitoring data (Night Time):


Sr	Location	Permissible	Values for the period		
No.		Limits, dBA	April 2022 – September 202		ber 2022
			Min.	Max.	Avg.
1	66KVA substation	70	50.7	54.0	52.4
2	Opposite shed D	70	52.7	55.1	53.8
3	ETP West site	70	51.2	55.3	53.4
4	ETP North site	70	53.2	60.7	56.2
5	Near TSDF	70	45.8	51.9	49.9
6	Near Main guest house	70	50.1	56.5	53.2
7	At Wyeth Colony	70	48.9	55.9	52.6
8	Gram Panchayat Hall	70	49.8	53.8	52.1
9	Near Main Office North site	70	49.5	56.7	53.2
10	Haria Water tank	70	50.7	53.4	52.2

viii Training shall be imparted to all employees on safety and health aspects of chemicals handling.

Complied.

Company is imparting training to all new employees as well as regular employees at regular intervals on safety and health aspects of chemicals handling. Safety precautions and hazards are also being communicated through display boards at appropriate places in the plants.

We have regularly arrange safety training (Workplace safety | Process safety) for our employ in every month

Photograph of safety training

Pre - employment and routine periodical medical examination for all employees shall be undertaken on regular basis.

Complied.

Pre-medical checkup and routine medical checkup for the employees is being done on regular basis.

Summary of medical checkup given in specific condition no. xiii.

ix Usage of PPE's by employee/ workers shall be ensured.

Complied.

Company have PPE policy in place and is strictly followed. Company is providing adequate PPEs to all the employees.

X	The project proponent shall also comply with all the environmental protection measures and safeguards proposed in project report submitted to the ministry. All the recommendation made in respect of environmental management and risk mitigation measures relating to the project shall be implemented.	Complied. Company has complied with all the environmental protection measures and safeguards proposed in the report apart from the recommendations made their in. Since ToR didn't suggest for EIA or public hearing, no such recommendations mentioned. However, recommendations made in respect of adequacy report for the referred project are complied and compliance report submitted vide our letter dated December 19, 2020
xi	The company will undertake all relevant measures for improving the socio economic condition for the surrounding area, CSR activities will be undertaken by involving local villages and administration:	Complied. Company is doing CSR activities for up gradation of surrounding area and well fare of nearby localities. List of CSR activities is given in Table 7.
xii	The company shall undertake eco developmental measures including community welfare measures in the project area for the overall improvement of the environment.	Complied as mentioned in xi above.

xiii A Separate
environmental
management cell
equipped with full
flagged laboratory
facility shall be set
up to carry out the
environmental
management and
monitoring
function.

xiv

Complied.

Company is having separate Environmental Management Cell equipped with full - fledged laboratory facility to carry out the environment management and monitoring functions. Apart from this, one Environment Research Lab is also established for research work for the study of various aspects related to environment and its remedial measures.

Company has developed a separate laboratory equipped with equipment such as pH meter, TDS meter, COD meter, Glass ware, gas chromatography system, and oven, muffle furnace, etc. to carry out testing of routine parameters. However sampling and testing is carried out by GPCB approved and company appointed consultant also. Currently the parameters measured in - house are pH, COD, TDS, MLVSS and MLSS.

The project authorities shall earmark adequate funds to implement the conditions stipulated by the Ministry Environment and Forest as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not

be diverted for any other purposes.

Complied.

EMP measures are implemented by 2010.

Recurring cost: A separate budget is being allocated every year to comply with all the legal requirement stipulated by SPCB, CPCB & MoEF apart from upkeep of pollution control systems and facilities. Total expenditure for the report period is given in below table.

Sr No.	Parameter	Recurring Cost (Rs. In lacs) For the report period April 2022- September 2022
1	Air Pollution Control	2460
2	Liquid Pollution Control	2400
3	Environmental Monitoring and Management	19
4	Solid waste Disposal	126
5	Occupational health	15
6	Green belt	15
Total		2635

A copy ΧV clearance letter shall be sent by the proponent to concerned Panchayat, Zila parishad/Municipa Corporation. Urban local body and the local NGO. if any, from who suggestions/repre sentation, if any,

were

received

of the Complied.

Latest submission to the Panchayat, Zila parishad, District Industrial Centre was distributed on 11.11.2016. Copy of the same was submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.

	while processing	
	the proposal.	
	The clearance	Complied.
	letter shall also be	Available at company's website at www.atul.co.in
	put on the web	
	site of the	
	company by the	
	proponent.	
xvi	The	Complied.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	implementation of	SPCB and MoEF is monitoring through their regular visits.
	· ·	Si CD and MoEr is monitoring unough their regular visits.
	the project vis - à - vis environmental	
	action plan shall	
	be monitored by	
	Ministry's	
	Regional office at	
	Bhopal / SPCB /	
	CPCB.	
xvii	The Project	Complied.
	Proponent shall	We informed the public through advertisement and by sending our EC to local
	inform the public	Panchayat, Zila parishad, District Industrial Centre for further actions at their end.
	that the project	
	has been	
	accorded	
	environmental	
	clearance by the	
	Ministry and	
	_	
	•	
	clearance letter	
	are available with	
	the	
	SPCB/Committee	
	and may also be	
	seen at website of	
	the Ministry of	
	Environment and	
	Forest at	
	http://www.envfor	
	<u>.ni.in</u> .	
	This shall be	Complied.
	advertised within	Advertisement was published as directed and copy of the same was submitted to
	seven days from	Ministry vide our letter dated November 14, 2009.
	the date of issue of	
	the clearance	
	letter at least in	
	two local	
	are widely	
	circulated in the	
	region of which	

	one shall be in the	
	vernacular	
	language of the	
	locality concerned	
	and a copy of the	
	same shall be	
	forwarded to the	
	concerned	
	Ministry's	
	Regional office at	
	Bhopal.	
xviii	The project	
	authorities shall	Start date: May 2009
	inform the	Completion date : May 2010
	Regional Office as	Final approval: We have obtained NOC and CCA from GPCB.
	well as the	Company has funded the project internally and hence not submitted the financial
	Ministry, the date	closure details.
	of financial	
	closures and final	
	approval of the	
	project by the	
	concerned	
	authorities and	
	the date of start of	
	the project.	
8	The Ministry may	Noted.
	revoke or suspend	
	the clearance if	
	implementation of	
	any of the above	
	conditions is not	
	satisfactory.	
	•	
9	The Ministry	Noted.
	reserves the right	
	to stipulate	
	additional	
	conditions, if	
	found necessary.	
	The company in a	
	time bound	
	manner will	
	implement these	
	conditions.	

10	Any appeal	Noted.
	against this	
	Environment	
	clearance shall lie	
	with the national	
	appellate	
	authority, if	
	preferred, within a	
	period of 30 days	
	as prescribed	
	under section 11	
	of National	
	Environment	
	Appellate	
	Authority Act,	
	1997.	
11	The above	Noted.
	conditions will be	
	enforced, inter -	
	alia under the	
	provisions of the	
	Water (Prevention	
	and Control of	
	Pollution) Act,	
	1974 the Air	
	((Prevention and	
	Control of	
	Pollution) Act,	
	1981 the	
	Environment	
	(Protection) Act,	
	1986, Hazardous	
	Wastes	
	(Management,	
	Handling and	
	Transboundary	
	movement) Rules,	
	2008 and the	
	Public Liability	
	Insurance Act,	
	1991 along with	
	their amendments	
	and rules.	

Table1: Quality of treated effluent

Sr	Parameter	Results					Results							
No.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Limits Mg/l						
1	рН	7.2	7.2	7.9	7.8	7.7	7.3	5.5 to 9.0						
2	Temperature	30.3	30.3	30.1	30.3	30.9	30.5	40 °C						
3	Colour (pt. co. scale)in units	50.0	40.0	60.0	50.0	60.0	70.0							
4	Suspended solids	58.0	31.0	47.0	37.0	48.0	56.0	100						
5	Oil and Grease	4.6	3.8	2.9	3.9	5.2	4.4	10						
6	Phenolic Compounds	0.9	1.0	0.8	0.7	0.9	0.7	5						
7	Cyanides	ND	ND	ND	ND	ND	ND	0.2						
8	Fluorides	0.6	0.9	1.1	0.9	0.8	0.7	2						
9	Sulphides	0.5	0.8	0.7	0.8	1.2	1.6	2						
10	Ammonical Nitrogen	7.1	14.8	8.1	11.3	9.6	7.9	50						
11	Arsenic	ND	ND	ND	ND	ND	ND	0.2						
12	Total Chromium	ND	ND	0.1	0.9	0.9	0.1	2						
13	Hexavelent Chromium	ND	ND	ND	ND	ND	ND	1						
14	Copper	0.1	0.3	0.1	0.2	0.2	0.1	3						
15	Lead	ND	ND	ND	ND	ND	ND	2						
16	Mercury	ND	ND	ND	ND	ND	ND	0.01						
17	Nickel	ND	ND	0.1	0.1	0.1	0.1	5						
18	Zinc	0.4	0.6	0.2	0.3	0.2	0.3	15						
19	Cadmium	ND	ND	ND	ND	ND	ND	2						
20	Phosphate	1.8	3.8	2.1	1.8	2.1	1.9	5						
21	BOD (3 days at 27°C)	43.0	48.0	42.0	54.0	58.0	52.0	100						
22	COD	216.0	236.0	208.0	231.0	244.0	210.0	250						
23	Insecticide/Pesticide	Absent	Absent	Absent	Absent	Absent	Absent	Absent						
24	Sodium Absorption Ratio	6.1	24.4	13.5	7.0	8.6	8.0	26						
25	Manganese	0.1	0.9	0.1	0.1	0.1	0.1	2						
26	Tin	ND	ND	ND	ND	ND	ND	0.1						
27	Bio Assay Test	100% survival of fish after 96 hrs. in 100% effluent	100% survival of fish after 96 hrs. in 100% effluent	90% survival of fish after 96 hrs. in 100% effluent %										
	Note: ND is Not [Detected.												

Table: 2 Stack Results

Detail	s of Process stack			OCT. 2021	NOV. 2021	DEC. 2021	JAN. 2022	FEB. 2022	MAR. 2022
Sr No	Stack Details	Paramenter	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
Atul E	ast Site								
1	furnace (Phasgene Plant)	РМ	150.0 mg/Nm3	24.8	20.7	24.6	31.7	21.4	18.2
2	Reactor (Phosgene plant- New)	CO		ND	ND	ND	ND	ND	ND
	reductor (i masgene pichi: wew)	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
Caust	tic Chlorine Plant								
3	Dechlorination Plant	Clz	9.0 mg/Nm3	7.1	4,1	3.4	6.3	5.2	3.7
		на	20.0 mg/Nm3	3.8	421	3.5	6.47	5.34	3.8
4	Common stock of HCI Sign unit 182	Clz	9.0 mg/Nm3	6.5	1.9	8.4	5.6	5.8	4.9
		на	20.0 mg/Nm3	6.2	2.36	6.58	6.78	5.96	5.03
FCB P	raint	9				**************************************	Å.	•	
5	Foul Gos Scubber	SO ₂	40.0 mg/Nm3	Not in use	Not in use	Not in use	Not in use	Not in use	Not in use
		N Ox	25.0 mg/Nm3	- Not in use	Notinuse	Not in use	Not in use	Not in use	NOT IN USE
Sulfur	ic Acid (East Site)	3				Mills			j.
6	Sulfuric Acid Plant	502	2.0 kg/T	1.4	1.25	0.96	0.75	0.82	0.75
		Acid Mist	50.0 mg/Nm3	34.8	302	18.3	10.4	30.2	10.6
7	ChloroSuFonic Acid plant reactor	Cl ₂	9.0 mg/Nm3	6.8	4,7	6.6	3.9	4.76	6.5
		на	20.0 mg/Nm3	6.99	4.83	6.78	4.01	4.89	6.7
Reson	cinol Pinat				1				
8	Spray Dryer (Resorcinal Plant)	РМ	150.0 mg/Nm3	33.1	40.6	22.7	29.5	25.4	14.3
9	Scubber vent (Resorcinal Plant)	SO ₂	40.0 mg/Nm3	32	24.1	11.6	23.2	172	13.2
Incine	rator	il			M	1865	27.	1	Ť
10	Incinerator	PM	150.0 mg/Nm3	54.8	493	39.7	46.2	56.7	44.7
		502	40.0 mg/Nm3	12.2	9.6	8.1	7.9	11.6	6.2
		NOX	25.0 mg/Nm3	18.2	157	10.1	14.8	182	10.4
NI Pla	int		- Signature						
11	Foul Gas Scubber	SO ₂	40.0 mg/Nm3	20.3	128	16.9	23.5	11.3	20.4
		NOx	25.0 mg/Nm3	17.1	7.2	10.3	19.4	162	15.6

2-4-D	Plant								
12	Common Scrubber; 2,4D Plant	Cl ₂	9.0 mg/Nm3	4.4	3.2	4.7	Annual Shutdown	3.9	4.4
		на	20.0 mg/Nm3	4.5	3.3	4.83	or mesonal destruction 2	3.8	4.6
	1	Phenol	-	ND	ND	ND		ND	ND
13	Dryer-1	PM with	20.0	Not Running	9.2	Not Running		11.2	12.82
	8	Pesticide	mg/Nm3						
		compound	-						
14	Dryer-2	PM with	20.0	Not Running	7.5	Not Running		8.3	15.2
		Pesticide compound	mg/Nm3						
15	Dryer-3	PM with	20.0	Not Running	Not Running	Not Running		Not Running	Not Running
	100000000000000000000000000000000000000	Pesticide	mg/Nm3	POST CONCERNATION	535241 50 ME TO CA	Terrandonin		000000000000000000000000000000000000000	* D. 100 C. I. 450 (100 L. 14. 14. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16
		compound							
16	Dryer-4	PM with	20.0	Not Running	Not Running	Not Running		Not Running	Not Running
		Pesticide	mg/Nm3						
17	Dryer-5	compound PM with	20.0	17.2	10.3	9.3		9.9	13.7
		Pesticide	mg/Nm3	27.12					
		compound	100 Marie 100						
NBD P	ant.	100000000000000000000000000000000000000) (I				
18	Spray Dryer	PM	150.0 mg/Nm3	Not in use	Not in use	Not in use	Not in use	Not in use	Not in use
19	Scrubber S-902	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
		Hd	20 mg/Nm3	10.2	13.7	7.9	6.2	9.6	6.2
20	Scrubber S-801/802	NOx	25.0 mg/Nm3	7.1	15.3	12.5	14.8	171	10.3
Sr. No.	Stack Details	Faramenter	Permissible	Obtained	Obtained	Obtained	Obtained	Obtained	Obtained
	patricia de la companya del companya de la companya del companya de la companya d	10.550.500.500.000.000	Limits	Value	Value	Value	Value	Value	Value
CP Pla	nt								
21	мсра	Cl ₂	9 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		на	20 mg/NM ³						
		SO ₂	40 mg/NM³						
22	Fipronil	SO ₂	40 mg/NM ¹	Not Running	Not Running	Not Running	Not Flunning	Not Flurning	Not Running
		на	20 mg/Nm3						
23	Imidacloprid	NH	175	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
			mg/Nm3						
24	Pyrothroids	SO ₂	40 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		на	20 mg/Nm3						
25	Stack at Amine Plant	NH ₃	175 mg/Nm3	150	94	44.8	64.3	85	65
MPSL	Plant		-						
26	Phosgene Scrubbr at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
27	Central Scrubber at MFSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
NICO p	lant								
28	Central scrubber at Nico Plant	Acetonytryle,	555	Not Running	Not Running	Not Running	Not Flunning	Not Flunning	Not Running
Ester P	lant								
29	Scrubber at Ester plant for Glyphosate	Formaldehyde	10 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Flunning	Not Running
30	Central Scrubber MCPA Plant	Hd	20 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
31	MPP plant scrubber	на	20 mg/Nm3	Not Running	Not Running	Not Running	3.4	Not Running	Not Running
		Phosgene	0.1 ppm	1			ND	1	

Atul \	West Site								
32	Shed A05/03/44	CI ₂	9 mg/NM ³	E	4.15	3.2	5.1	Not Running	Not Running
		HCI	20 mg/NM ³	Not Running	4.3	2.29	5.24]	
33	Shed B2/12/24 Reaction Vessel	Cl ₂	9.0 mg/Nm3	6.5	6.4	3.7	5.2	5.4	3.8
		HCI.	20.0 mg/Nm3	13.5	8.4	39	5.34	5.55	3.9
34	Shed B18/02/24 Fan	SO ₂	40 mg/NM ³	20.9	23.7	10.8	17.6	17.9	17.1
		Cl ₂	9 mg/NM ³	6.2	5.5	3.6	5.65	6.1	6.1
		HCI	20 mg/NM ³	6.37	5.65	3.58	5.5	6.27	6.27
35	Shed C5/20/15 Chlorinator	Cl ₂	9.0 mg/Nm3	5.6	4.4	2.3	3.9	5.5	6.1
		HCI	20.0 mg/Nm3	5.7	4.52	2.36	4	5.65	6.28
36	Shed D Niro Spray dryer No. 45	PM	150.0 mg/Nm3	60.3	51.3	Not Running	Not Running	63.7	68.3
37	Shed D Niro Spray dryer No.50	FM	150.0 mg/Nm3	Not Running	Not Running	56.8	33.9	Not Running	Not Running
38	Shed E 7/12/49 Spray Dryer	PM	150.0 mg/Nm3	71.3	Not Running	Not Running	43.7	Not Running	Not Running
39	Shed F F6/1/15 Reaction Vessel	Cl ₂	9.0 mg/Nm3	5.2	4.2	5.1	7	6.4	Not Running
		HCI	20.0 mg/Nm3	7.43	14.8	5.24	7.2	6.58	
40	Shed G 10/8/1 (receiver)	Cl ₂	9.0 mg/Nm3	Not Running					
		HCI	20.0 mg/Nm3						
41	Shed H 11/6/17 chlorinator	Cl ₂	9.0 mg/Nm3	8.1	5.7	719	3.55	4.4	3.4
		HCI	20.0 mg/Nm3	8.32	5.9	7.4	11.4	9.6	12.4
42	Shed K K-13/3/4 Final of Sulfuric acid	SO ₂	2.0 kg/T	1.1	0.94	0.88	0.65	0.46	0.21
	plant	Acid Mist	50.0 mg/Nm3	16.9	138	10.3	14.7	10	18.4
43	Shed J15/09/25	HBr		ND	0.94	ND	ND	ND	ND
		SO ₂	40 mg/NM ³	24.6	ND	17.5	24.9	26.8	18.7

Sr. No.	Stack Details	Paramenter	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
44	Shed J12/01/42	so ₂	40 mg/NM ³	30.4		22.6		24.3	18.2
		CI ₂	9.0 mg/Nm3	5.6	Not Running	4.9	Not Running	6.2	5.8
		HCl	20.0 mg/Nm3	5.75		5.03		6.37	5.96
45	Shed J12/03/36	so,	40 mg/NM°		10.3	26.1	21.9	10.8	16.3
		HCl	20.0 mg/Nm3	Not Running	7.5	9.9	13.2	9.4	13.1
46	Shed N Sembber Fan N20/08/24	Ci ₂	9 mg/NM ³	7	4.5	3.3	4.9	4	3.2
	The SVSS AS State Of Material Connection and Control and Control Contr	HCi	20 mg/NM ³	14.5	4.62	3.39	7.8	6.2	9.6
47	Shed N Scrubber Fan N20/02/41	SO ₂	40 mg/NM ²	20.9	15.7	18.6	23.6	17.4	11.7
48	Sulfer Black Plant	H ₂ S	-	ND	ND	ND	ND	ND	ND
	CARCONERS CONTACTOR AND AND CONT	NH _s	175 mg/NM³	74	84	54.8	45.6	61.2	112
essanter i	Software Strift and Challenger Section	H ₂ S	-	ND	ND	ND	ND	ND	ND
49	Sulfer Dyes plant	NH ₃	175 mg/NM ³	56.1	85	15.6	27.5	10.2	168
50	Flavors & Fragrances Plant	HCl	20 mg/NM ³	Not Running					
Atul N	orth Site			1	-				
51	N-FDH Plant Catalytic Incinerator	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		SO ₂	40.0 mg/Nm3						
		NOx	25.0 mg/Nm3						
		Formaldehyde	10.0 mg/Nm3						
52	PHIN Plant	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
53	PHIN-II Plant	HCI	20 mg/NM ³	39	2.5	2	3.4	3.64	Not Running
54	DDS Plant (Pharma Plant)	NH ₃	175 Mg/Nm3	110	44	80	70	60	76
55	SPIC II Plant (DCDPS)	so,	22:	16.4	ND	ND	ND	ND	ND
56	SFIC I Plant	NH ₃	175 mg/Nm3	149	90	110	140	Not Running	Not Running
57	SPIC IV Plant	NH ₃	175 mg/NM ³	150	95	75	80.8	106	120
		SO ₂		23.1	ND	ND	ND	ND	ND

				OCT 2021	NOV. 2021	DEC. 2021	JAN 2022	FEB. 2022	MAR. 2022
Sr. No.	Stack Details	Paramenter	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
East s	Ite	-		3					V
1	FBC boiler El	РМ	100	56.4	Not Running	Not Running	Not Running	Not Running	51.6
			mg/Nm3	235					275
	I.	SOz	600 mg/Nm3	235					275
	1	NOx	600	260	1				290
	rnc bylanna	704	mg/Nm3	Not Busines	33.7	147	507	VEG	Not Bounds
2	FBC boiler E2	PM	mg/Nm3	Not Running	33./	44.2	56.7	45.9	Not Runnin
	1	SO ₂	600	1	480	283	290	302	
	4	NOx	mg/Nm3 600	-	465	281	240	256	
	1	NOK	mg/Nm3		400	281	240	200	
3	FBC boiler E3	РМ	100	49.4	40.6	47.6	531	60,3	44
	-	502	mg/Nm3 600	225	473	270	274	298	264
		302	mg/Nm3	223	4/3	2/0	2/4	296	204
	1	NOx	600	274	455	268	246	234	270
4	NACTION	PM	mg/Nm3 150.0	54.3	41.3	39.4	298	24.6	33.6
4	Hot Gil Unit (Resorcinal Plant)	FIA	mg/Nm3	54.5	41.3	39.4	29.5	24.0	33.0
		SO ₂	100 ppm	6.5	5.6	12.3	5.6	9.4	6.1
		NOx	50 ppm	21.3	14.2	18.7	249	20.8	24.9
5	DG set 1010 KVA (Standby)	РМ	150 mg/Nm ³	53.2	49.7	44.2	417	34.3	43.6
		SO ₂	100 ppm	8.4	7.3	6.9	5,6	5.25	4.1
		NOx	50 ppm	29.8	21.4	35.4	318	36.3	30.4
West!	region	- 07 - 100			35		27	500	
6	FBC boiler W1	РМ	100 mg/Nm3	56.3	38.1	44.5	56.8	Not Running	Not Runnin
		SO ₂	600	320	365	314	296		
	1	NOx	mg/Nm3 600	323	380	295	278	1	
		1	mg/Nm3	0 0	S. S. S. S.	4	140,000	0:	ēv.
7	Hot Oil Plant shed-B	PM	150.0	45.7	34.9	34.9	43.7	37.6	37.6
	1	502	mg/Nm3 100 ppm	10.3	16.9	16.9	9.9	14.1	14.1
	1	NOx	50 ppm	16.2	23.9	23.9	256	20.8	27.3
8	Oil burner Shed B	РИ	150.0 mg/Nm3	Not Running	Not Runnin				
	(Stand By)	SO ₂	100 ppm	1					
		NOx	50 ppm						
9	Bailer (50 TPH 2 Nos) (New boilers) W2.W3	РИ	50 mg/Nm3	33.4	39.6	31.4	31.4	44.6	44.6
		SO ₂	600 mg/Nm3	290	312	301	301	290	281
	1	NOx	300 mg/Nm3	250	236	286	286	218	312
	1	Mercury	0.03	ND	ND	ND	ND	ND	ND
10	DG set 1500 KVA	РИ	mg/Nm3 150.0	40.8	44.6	33.6	49.6	41.6	47.2
	(Stand By)	50,	mg/Nm3 100 ppm	13.5	6.8	5.4	5.9	5.1	3.8
	1	NOx	50 ppm	21.2	17.2	28.6	241	36,3	23.2
North	Site	75		0.0000000			28/1/20		N4957.55
11	Thermic fluid heater of DCO/DAP Plant	РМ	150.0 mg/Nm3	34.6	30.1	36.3	41.7	47.1	38.3
_	D SO OCK TIME	502	100 ppm	6.8	5.9	4.4	5.1	7.4	10.2
	1	NOx	50 ppm	36.3	24.3	18.1	138	21.6	28.3

Table 3: Ambient Air Monitoring details

Station	Parameter	Limit micro gm/NM ³	April 2022	May 2022	June 2022	July 2022	August 2022	September 2022
66 KV	PM 2.5	60	32.0	34.0	32.0	33.0	31.0	29.0
	PM10	100	45.0	53.0	51.0	53.0	45.0	54.0
	SO ₂	80	13.7	16.8	21.6	17.9	22.6	16.9
	NO ₂	80	26.3	24.9	27.3	25.4	24.7	27.9
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	6.5	5.9	4.8	4.1	ND	ND
Opposite	PM 2.5	60	30.0	32.8	30.1	10.3	13.0	16.7
Shed D	PM10	100	41.0	54.8	46.7	34.5	41.8	15.2
	SO ₂	80	14.5	17.2	13.3	10.1	19.8	13.1
	NO ₂	80	21.0	25.6	17.8	14.6	12.7	17.3
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
West site	PM 2.5	60	29.0	32.0	36.0	34.0	32.0	26.0
ETP	PM10	100	39.0	55.0	56.0	52.0	59.0	50.0
	SO ₂	80	11.6	22.9	20.7	22.4	23.7	18.0
	NO ₂	80	25.9	27.1	26.1	24.9	26.3	26.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
North ETP	PM 2.5	60	28.0	30.0	34.0	30.0	33.0	30.0
	PM10	100	42.0	54.0	50.0	55.0	58.0	51.0
	SO ₂	80	15.3	20.6	18.4	16.8	19.4	17.4
	NO ₂	80	17.3	25.1	28.4	26.3	31.2	28.1
	Ammonia	400	4.6	4.3	4.1	3.4	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
TSDF	PM 2.5	60	31.0	35.0	31.0	35.0	29.0	27.0
	PM10	100	38.0	51.0	54.0	51.0	49.0	53.0
	SO ₂	80	12.0	18.5	16.9	14.3	16.9	18.2
	NO ₂	80	22.8	26.3	24.3	28.4	27.9	26.5
	Ammonia	400	3.1	2.6	3.2	3.9	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	26.5	34.8	25.3	14.6	19.7	19.2

Main Guest	PM10	100	37.6	53.6	54.8	39.2	40.2	45.5
House	SO ₂	80	15.6	20.4	13.8	9.8	15.6	15.1
	NO ₂	80	17.0	29.3	20.1	14.0	12.4	17.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Wyeth	PM 2.5	60	25.0	31.0	32.0	29.0	28.0	31.0
Colony	PM10	100	36.0	52.0	53.0	50.0	57.0	48.0
	SO ₂	80	14.1	20.7	19.2	18.5	19.4	16.4
	NO ₂	80	24.1	29.5	25.0	26.7	30.2	30.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Gram	PM 2.5	60	31.6	34.6	30.5	14.3	18.4	15.3
panchayat hall	PM10	100	41.7	52.6	50.7	38.4	34.1	31.9
	SO ₂	80	13.6	21.9	10.7	7.6	7.6	17.4
	NO ₂	80	23.7	25.9	20.4	14.7	11.7	18.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Main office,	PM 2.5	60	30.6	35.6	26.4	11.4	15.3	18.0
North site	PM10	100	39.0	52.0	49.6	37.9	45.2	46.9
	SO ₂	80	12.4	21.3	10.8	8.9	14.4	16.2
	NO ₂	80	22.5	25.2	16.7	14.6	11.3	21.7
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Haria water	PM 2.5	60	26.0	31.5	29.3	12.5	13.4	17.5
tank	PM10	100	37.3	55.3	53.6	39.1	40.8	46.9
	SO ₂	80	11.6	16.4	10.8	10.6	19.7	16.7
	NO ₂	80	24.5	25.3	16.3	14.8	11.8	19.2
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Table 4: Fugitive Emission Monitoring details

Plant	Area		Prescribed Limit	Results of VOCs in Milligram per NM ³						
			Mg/Nm³	April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	
2,4 D	Reactor	Phenol	19	ND	ND	ND	ND	ND	ND	
	Buffer tank	Chlorine	3.0	1.5	1.6	1.8	1.6	1.9	1.4	
Resorcinol	Benzene storage tank area near vent	Benzene	15	0.5	ND	0.4	0.6	0.5	0.3	
	Near Extraction/ scrubber unit	Butyl acetate	-	110.0	ND	90.0	70.6	105.0	80.2	
Pharma	At second floor work area	Ammonia	18	3.9	5.7	6.4	5.2	7.1	4.9	
	Ammonia recovery area	Ammonia	18	4.1	5.3	7.3	6.4	8.1	7.4	
Epoxy - I	At vacuum pump 2nd floor	ECH	10	2.9	3.4	4.9	3.2	4.4	4.1	
	At vessel POS 1208 G.F	ECH	10	3.3	4.8	6.2	4.6	5.1	3.8	
Shed H	At second floor work area	Nitrobenzen e	5	2.1	3.1	2.4	1.9	2.2	1.7	
Shed J	Buffer Tank	Chlorine	3	1.9	1.2	1.3	2.1	1.1	ND	

Table 5: Noise level monitoring data (Day Time)

Sr	Location	Noise L	evel, dBA	\				
No.		April	May	June	July	August	September	Limits, dBA
		2022	2022	2022	2022	2022	2022	
1	66KVA substation	66.2	67.9	66.3	67.0	62.7	64.0	75
2	Opposite shed D	64.6	66.7	67.6	69.4	65.9	62.8	75
3	West site ETP	67.5	70.2	68.2	67.2	65.9	64.7	75
4	North site ETP	69.2	67.3	69.1	67.8	66.4	64.3	75
5	Near TSDF	57.8	54.3	56.9	58.2	57.3	59.2	75
6	Near main guest house	68.6	66.5	68.2	66.9	60.3	62.8	75
7	At wyeth colony	58.1	56.8	58.8	61.7	60.8	62.5	75
8	Gram panchayat hall	69.5	67.9	63.2	61.5	62.4	61.8	75
9	Near main office North site	57.3	55.9	57.4	59.4	58.7	60.0	75
10	Haria water tank	64.0	67.4	65.5	66.8	66.8	64.9	75

Table 6: Noise level monitoring data (Night Time)

Sr	Location Noise Level, dBA							Permissible
No.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Limits, dBA
1	66KVA substation	51.5	50.7	53.6	51.9	52.9	54.0	70
2	Opposite shed D	53.5	55.1	53.7	52.7	53.4	54.5	70
3	West site ETP	51.2	54.6	52.4	54.2	55.3	52.9	70
4	North site ETP	60.7	58.4	55.1	54.6	55.4	53.2	70
5	Near TSDF	50.6	50.9	51.9	50.8	49.7	45.8	70
6	Near main guest house	53.2	56.5	54.3	52.1	50.1	53.4	70
7	At wyeth colony	48.9	51.3	52.6	53.6	55.9	53.8	70
8	Gram panchayat hall	51.6	49.8	53.8	51.2	53.7	52.6	70
9	Near main office North site	50.2	49.5	52.9	54.8	55.3	56.7	70
10	Haria water tank	52.8	53.2	51.2	53.4	52.4	50.7	70

Table7: CSR Activities

	A ⁻	tul Itd.			
Sr. No.	Name of Project	Location of the Project		Amount Budgeted for the FY 2021-22 (in ₹)	(₹ lakh: Amount spent for the FY 2021-22 (in ₹)
		State	District	V 4	W. 7. 22
1	Enhancement of educational practices in Kalyani Shala	Gujarat	Valsad	36.45	36.45
2	Improvement of teaching methodology for primary school children - Adhyapika project	Gujarat	Valsad	63.00	63.00
3	Support to tribal children in Atul Vidyamandir	Gujarat	Valsad	12.30	12.30
4	Support to develop a school in a tribal area	Gujarat	Navsari	13.00	13.00
5	Provision of scholarships to needy and meritorious students	Gujarat	Valsad	4.80	4.80
6	Provision of education kits to children	Gujarat	Valsad	12.30	12.3
7	Support to needy special children	Gujarat	Valsad	5.15	5.1
8	Introduction of digital education through tablet laboratory	Gujarat	Valsad	6.10	6.1
9	Conservation of manuscripts	Gujarat	Ahmedab	50.00	50.00
10	Support to children with special needs	Gujarat	Bharuch	1.40	1.4
11	Promotion of learning and life skills among children	Karnataka	Bangalor e	1.00	1.0
12	Contribution to publish books on Indian culture Ecology Philosophy	Rajasthan	Jaipur	3.50	3.5
13	Support to develop a school in economically deprived area	W est Bengal	Murshida bad	12.50	12.5
14	Skills training to youth as apprentices	Gujarat	Valsad	95.01	95.0
15	Empowerment of women youth through various vocational training courses	Gujarat	Valsad	27.65	27.6
16	Skill development of youth through vocational training with NABARD	Gujarat	Valsad	11.60	11.60
17	Development of micro-entrepreneurs to provide sustainable livelihood	Gujarat	Valsad	12.40	12.4
18	Creation of livelihood opportunities for tribal families by providing cows	Gujarat	Valsad	35.40	35.4
19	Empowerment of women through self- help groups	Gujarat	Valsad	10.50	10.5

20	Enhancement of rural health through health camps	Gujarat	Valsad	12.50	12.50
21	Promotion pf nutrition gardens	Gujarat	Valsad	4.75	4.75
22	Promotion of health and wellbeing of adolescents and women	Gujarat	Valsad	17.80	17.80
23	Provision of blood units to the needy and deserted patients	Gujarat	Bharuch	2.40	2.40
24	Retrofitting of individual household toilets	Gujarat	Valsad	12.00	12.00
25	Support to needy patients	Gujarat	Valsad	15.50	15.50
26	Support to disaster relief for COVID-19 pandemic	Gujarat	Valsad Bharuch	18.94	18.94
			Mehsana	81.70	81.70
27	Construction of walkway and streetlights	Gujarat	Valsad	100.49	100.49
28	Development of infrastructure in Atul	Gujarat	Valsad	29.33	29.33
	and surrounding villages			44.35	44.35
29	Establishment of solid waste management system in Atul village	Gujarat	Valsad	70.85	70.8
30	Implementation of natural resource	Gujarat	Valsad	23.65	23.6
	management project			6.64	6.6
31	Conservation of energy through Solar	Gujarat	Valsad	24.00	24.00
32	Protection of animals	Gujarat	Valsad	1.45	1.45
		New Delhi	New Delhi	10.00	10.00
33	Establishment of Atul Medical Diagnostic Centre			485	50.2
34	Setting up of nature-based wastewater recycling systems			45.00	45.09
	Total			1420.41	985.74

19	Enhancement of rural health through health camps	10,00,000	5,23,920
20	Promote Nutrition Gardens	10,00,000	2,93,080
21	Establish Atul Medical Diagnostic Centre	5,00,00,000	-5
22	Promote health and wellbeing of adolescents and women (including sampoorna project)	20,00,000	7,11,372
23	Provision of blood units to the needy and deserted patients	2,00,000	2,40,000
24	Support to needy patients	5,00,000	2,03,045
25	Support to disaster relief for COVID-19 pandemic	1,50,00,000	1,23,64,537
26	Construction of walkway and streetlights	70,00,000	55,31,528
27	Infrastructure development in Atul and surrounding villages	45,00,000	33,79,977
28	Establishment of solid waste management system in Atul village	55,00,000	54,83,981
29	Natural resource management	50,00,000	5,02,052
30	Conservation of energy through Solar	30,00,000	-
31	Nature based wastewater recycling project	75,00,000	避
Total CSR budget		14,30,00,000	4,75,53,482
Adminis	strative overheads	70,00,000	21,58,626
Total		15,00,00,000	4,97,12,108

Atul Ltd

Project: Setting up of an additional captive power plant of 22 MW within the existing chemical manufacturing complex at post Atul, Dist. Valsad.

EC Compliance Report for EC No. SEIAA|GUJ|EC|1(d)|340|2016

Report period: April 2022 – September 2022

Sr No.	Condition			Compliance	e Status			
A. Co	A. Conditions :							
A.1 S	A.1 Specific Condition:							
1.	Unit shall comply the emission standards mentioned in the Notification by MoEF & CC vide S.O. 3305(E) dated 07/12/2015.	Complied. We ensure that at no time the emission level will go beyond the stipulated standards prescribed limits. In such cases occurrences we will intimate to the board & authority time to time. In event of failure of APCM, the unit shall not restart until the control measures are rectified to achieve efficiency.						
		We have installed Online Continuous Emission Monitoring System (OCEMS) in all the Boiler stacks as per CPCB guideline and the same is connected with CPCB and GPCB server. Apart from continuous online monitoring, flue gas stack analysis is also monitored offline at regular interval (Monthly) for ensuring the compliance. The testing Lab appointed for flue gas analysis is GPCB approved (schedule - II) M/s. Pollucon Laboratories Pvt. Ltd, Surat which also has NABL approval						
		Parameter wi				trie stipt	ılated standards.	
		Parameter	Standard values as	Unit	April 20		ptember 2022	
		DV	per CCA	/N13	Min.	Max.	Avg.	
		PM PM (New Boiler)	50	mg/Nm³ mg/Nm³	39.6 26.8	64.2 43.6	52.5 36.4	
		SO ₂	600	mg/Nm³	264.0	578.0	309.8	
		NOx	600	mg/Nm³	258.0	580.0	306.2	
		NOx (New Boiler)	300	mg/Nm³	218.0	284.0	264.0	
		,	results for t	he report p	eriod is o	ıttached	as Annexure I.	

D.G.SET STACK (D.G.SET)

The Ambient Air Quality is being monitored at regular interval for ensuring the compliance. The testing lab appointed is M/s. Royal Environment Auditing & Consultancy Service, Rajkot NABL Approved. The maximum value (PM2.5, PM10, SO₂, NO₂, Ammonia, and HCl) during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Ambient air monitoring Reports:

Station	Parameter	Limit micro - gm/NM ³	Values for the period April 2022 – September 2022			
			Min.	Max.	Avg.	
66 KV	PM2.5	60	29.0	34.0	31.8	
	PM10	100	45.0	54.0	50.2	
	SO ₂	80	13.7	22.6	18.3	
	NO2	80	24.7	27.9	26.1	
	Ammonia	400	ND	ND	ND	
	HCI	200	4.1	6.5	5.3	
Opposite	PM2.5	60	10.3	32.8	22.2	
Shed D	PM10	100	15.2	54.8	39.0	
	SO ₂	80	10.1	19.8	14.7	
	NO2	80	12.7	25.6	18.2	
	Ammonia	400	ND	ND	ND	
	HCI	200	ND	ND	ND	
Near West	PM2.5	60	26.0	36.0	31.5	
Site ETP	PM10	100	39.0	59.0	51.8	
	SO ₂	80	11.6	23.7	19.9	
	NO2	80	24.9	27.1	26.2	
	Ammonia	400	ND	ND	ND	
	HCI	200	ND	ND	ND	
Near North	PM2.5	60	28.0	34.0	30.8	
ETP	PM10	100	42.0	58.0	51.7	
	SO ₂	80	15.3	20.6	18.0	
	NO2	80	17.3	31.2	26.1	

	Ammonia	400	3.4	4.6	4.1
	HCI	200	ND	ND	ND
TSDF	PM2.5	60	27.0	35.0	31.3
1301	PM10	100	38.0	54.0	49.3
	SO ₂	80	12.0	18.5	16.1
	NO2	80	22.8	28.4	26.0
	Ammonia	400	2.6	3.9	3.2
	HCI	200	ND	ND	ND
Main Guest	PM2.5	60	14.6	34.8	23.4
House	PM10	100	37.6	54.8	45.2
110000	SO ₂	80	9.8	20.4	15.1
	NO2	80	12.4	29.3	18.4
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Wyeth	PM2.5	60	25.0	32.0	29.3
Colony	PM10	100	36.0	57.0	49.3
	SO ₂	80	14.1	20.7	18.1
	NO2	80	24.1	30.4	27.7
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Gram	PM2.5	60	14.3	34.6	24.1
Panchayat	PM10	100	31.9	52.6	41.6
Hall	SO ₂	80	7.6	21.9	13.1
	NO2	80	11.7	25.9	19.1
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Main Office	PM2.5	60	11.4	35.6	22.9
North Site	PM10	100	37.9	52.0	45.1
	SO ₂	80	8.9	21.3	14.0
	NO2	80	11.3	25.2	18.7
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Haria	PM2.5	60	12.5	31.5	21.7
Water	PM10	100	37.3	55.3	45.5
Tank	SO ₂	80	10.6	19.7	14.3
	NO2	80	11.8	25.3	18.7
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND

The results are below permissible emission standards mentioned in the Notification by MOEF&CC vide S.O. 3305(E) dated December 07, 2015 during the report period is attached as **Annexure II.**

2. All measures shall be taken to prevent soil and ground water contamination

Complied.

Kindly note that we are not extracting ground water as a source of water for the referred project. We have adequate control measured for any leakages from the plant to prevent groundwater contamination. We are ensuring that solid waste is stored in identified solid hazardous waste storage area, provided with covered shed, impervious flooring and leachate collection facility to prevent soil contamination.

We are regularly monitoring ground water and soil quality through reputed institute (M/s. Pollucon Laboratories Pvt. Ltd, Surat) to access the impacts on soil and ground water quality. The study shows that there is no soil and ground water contamination found.

3. The project proponent shall submit the detailed study report to Gujarat Pollution Control Board (GPCB) at least once in a year, through the reputed institute or university to assess the impacts on soil and ground water quality, if any due to application of waste water generation from the CPP and shall adopt the additional mitigation measures may be as through suggested such studies.

Complied.

Ground water and soil quality is being checked regularly for in and around the unit by reputed and NABL approved agency M/s. Pollucon Laboratories Pvt. Ltd, Surat. Abstract of ground water report for the year 2021-22 is attached as **Annexure VII**.

A.2: WATER:

4. The fresh water requirement for the proposed expansion shall not exceed 2095 KL/day and it shall be met through the existing water supply system from River par.

Complied.

The average water consumption for the report period is **1482 KL/day** only which is well within the permissible limit of **2095 KL/Day**. Detailed break up is given in below table:

Sr No.	Month	Quantity (KL/Month)	Avg. Quantity. (KL/Day)
1	April - 2022	50184	1673
2	May -2022	50932	1643
3	June - 2022	49492	1650
4	July - 2022	39189	1264
5	August - 2022	42978	1386

	6	September - 2022	38301	1277

The maximum value during the report period confirms that at no time the water consumption went beyond the stipulated value. Fresh water requirement is met through the existing water supply system from river Par.

5. Metering of water shall be done and its records shall be maintained. No ground water shall be tapped in any case for meeting the project requirements.

Complied:

Magnetic water flow meter is attached at inlet line of ETP and reuse line (outlet) at RO permeate line. Its records are regularly maintained. We are not using ground water tapped in any case for meeting the project requirements. Our source of water is river Par.

Water meter @reuse line

The industrial effluent 6. aeneration from the proposed expansion shall not exceed 270 KL/day and entire quantity of effluent shall be utilized for ash quenching, dust suppression, hydrant fire make up, gardening floor plants, cleaning.

Complied.

Waste water generation is not exceeding prescribed limit of **270 KL/Day** during report period. The average wastewater generation for the report period is **117 KL/day** only which is well within the prescribed limit of **270 KL/Day** and entire waste water quantity is utilized / reused after giving neutralization & RO treatment.

Entire quantity of waste water is being utilized in ash quenching, coal storage yard to attend coal smoldering, dust suppression, fire hydrant make up, gardening plants floor cleaning and no waste water discharged to ETP. Detail break up is given in below table.

Sr No.	Month	Waste Water Generation (KL/Month)	Avg. Waste Water Generation Reused Quantity (KL/Day)
1	April - 2022	2601	87
2	May -2022	1975	64
3	June - 2022	3364	112
4	July - 2022	4525	146
5	August - 2022	4850	156
6	September - 2022	4057	135

7. There shall be no discharge of industrial effluent from the proposed project in any case.

Complied.

Industrial waste water generation is not exceeding prescribed limit of 270 KL/Day during report period. Neutralization pit has been put in service for waste water generated from D.M. Plant followed by RO system. RO permeate is recycled back and reject is utilized in ash quenching and coal storage yard to attend coal smoldering, dust suppression, fire hydrant make up, Gardening plants, floor cleaning. Please refer table of waste water generation (KLD) in point no.6.

Hence, Our CPP unit is achieved ZLD. No Discharge of industrial effluent from the project in any case.

8. Domestic waste water generation shall not exceed 1 KL/day Which shall be disposed of into soak system.

Complied.

Domestic water generation in not exceeding the prescribed limit of EC during report period.

The average wastewater generation for the report period is **0.54 KL/day** only which is well within the limit. Domestic waste water disposed through septic tank system.

Sr No.	Month	Domestic Waste Water Generation (KL/Day)
1	April - 2022	0.42
2	May -2022	0.39
3	June - 2022	0.53
4	July - 2022	0.66
5	August - 2022	0.69
6	September - 2022	0.55

9. The unit shall provide metering facility at the inlets and outlets of the collection cum reuse system of waste water and maintain records of the same.

Complied.

Magnetic Flow Meter is provided at the inlet of the collection tank and reuse system of waste water and records are being maintained. Photograph of water meter is shown below:

Water meter @Inlet line

Water meter @Reuse line

We are reusing treated waste water in ash quenching, coal storage yard to attend coal smoldering, dust suppression, fire hydrant make up, Gardening plants & floor cleaning. Hence, we are achieving ZLD. No waste water discharge to ETP from our 22 MW Captive power plant.

10. Proper logbooks of waste water reuse system showing quantity and quality of effluent reused shall be maintained and furnished the GPCB from time to time.

Complied.

We are properly maintaining logbook of water consumption, waste water generation & reuse data showing quantity and quality of effluent. The data is furnished through EC compliance reports to GPCB.

11. Rain water harvesting rooftop rain water shall be undertaken as proposed in the EIA report of the project and the same water shall be used for the various activities of the project to conserve fresh water as well as to recharge ground water through percolation wells. Before recharging the rain water, pre - treatment must be done to remove suspended matter.

Complied.

Rooftop rain water from Coal sheds and New TG building is collected in well - constructed pond and used as make up water for cooling tower.

We have already three numbers of check dams in natural storm water drains to collect and harvest rain water in monsoon season after giving necessary pre - treatment to remove suspended matter as we have pumped these rain water to clarifloculator units to remove suspended matter. We are creating facility/ capacity to cater our consumption with rain harvested water with zero river drawls of water from river during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water. We also construct temporary sand bag dam on top of dam towards the end of monsoon to store additional free flowing rain water in river Par. In addition to above, surface runoff water and roof top water is used to recharge bore wells.

Total No. of Pond: 2 Nos.

Capacity of Pond: (1 Nos. x 12000 KL) & (1 Nos. x 2000 KL) Company has harvest 468355 KL rain water during 2022.

Photograph of rain water harvesting structure (Pond) as shown below:

Water Harvesting Project at Colony

Water Harvesting Project near Coconut Circle

A.3 Air:

Existing two coal fired steam boilers shall be replaced with						
two capa	AFBC city 50 T	Boilers PH each	having			

Complied.

The old coal fired steam boilers are replaced with higher efficiency AFBC boilers with adequate APC facility (4 field ESP).

13. Fuel (Indian coal/and or Imported coal and or Lignite) to the tune of 16725 MT/M

Complied.

The average fuel consumption (coal | lignite) for the report period is **13550 MT/M** only which is well within the limit. Detail break up is given in below table:

	shall be used for proposed boilers.		Sr No.	Month	MT	consumption		
			1	April - 2022	1308			
			2	May -2022	1378			
		l —	3	June - 2022	12349			
		l —	4	July - 2022	1448			
		l —	5	August - 2022	14918			
		L	6	September - 202	12680)		
		The maximum values during the compliance period confirm that at no time the fuel consumption went beyond the stipulated value.						
14.	Sulfur and ash content of the	'						
	fuel to be used shall be	We are using Indian coal or Imported coal and lignite in different						
analyzed and its record shall		proposition as per availability. We are regularly monitor and analyze the proximate & ultimate analysis of coal Lignite which show % Ash						
	be maintained.					al present in coal lignite		
		Content,	ucv, 3	dipilal content and	nedvy met	ai present in coai fiigint		
		Ash Content: 30 - 35 % (Indian Coal), 10 - 12% (Imported coal) Sulphur Content: <0.1% (Indian Coal), <0.2% (Imported coal)						
15	A Long term study of radio	Complied.						
	activity and heavy metal The radio activity and heavy metal contents in coal lignite he							
	contents in coal/ lignite to be		carried out and report submitted vide our letter Atul/SHE/EC					
	used shall be carried out through a reputed institute	Compliance/03 dated June 30, 2018.						
	and results thereof analyzed	F that is a shallow of No. 10 A 20/2010/CFACV201 Have						
	regularly and reported along	Further to your letter no. F. No. 18 - A - 30/2019(SEAC)/201, It may						
	with monitoring reports. Thereafter mechanism for an in - built continuous monitoring for radio activity		please be noted that we are in discussion with recommended institute for carrying out above analysis and report will be submitted.					
			Tor currying out above analysis and report will be submitted.					
			We have not found the inbuilt continuous monitoring for radio activity					
			and heavy metal in coal lignite anywhere in India as well as abroad.					
	and heavy metals in	Even though we have still continued our search for agencies supplying						
Codi/lightle and Fly ash such anting system and					n and we will install the same as soon as we get the			
	(Including bottom ash) shall be put in place.		same.					
16.	Height of flue gas stacks	Complied.						
attached to boilers shall be Height of the stack is 106 meters. The emission is dis								
minimum 74.58 meters. adequate height of stacks as per 0								
		Stack	Sto	ick attached to	Stack	APCM		
		No.			Height			
					In meter			
		1	Boiler	(50 TPH x 2Nos.)	106	ESP with 4 field		
		For Boilers: Stack Height H=14(Q) ^{0.3}						
		Height of the stack is 106 meters, which is actually higher than norms.						
17.	A flue gas stack of 74.58m	Complied						
	height shall be provided with							
	online monitoring system to		We have installed online monitoring system to boiler for SPM, SO ₂ and					
proposed steam boiler. NOx and the same is connected to CPCB server.						er.		

Mercury gas emission from stacks shall also be monitored on periodic basis.

Complied.

Mercury emission is also monitored on monthly basis by NABL approved agency.

For Mercury stack emission data please refer specific condition No.1. No Mercury is detected in Flue gas stack in the monitoring results.

18. High efficiency Electro static precipitators (ESP) with efficiency not less than 99.9% shall be installed for control of flue gas emission from the proposed Boilers.

Complied.

We have installed high efficiency Electro Static Precipitator (ESP) (4 field) with 99.9% efficiency to control of flue gas emission within the permissible limit. The monitoring reports shows that average SPM emission is identify 43.6 mg/Nm³ which is below permissible limit of 50mg/Nm³. Photograph of ESP is shown below:

ESP

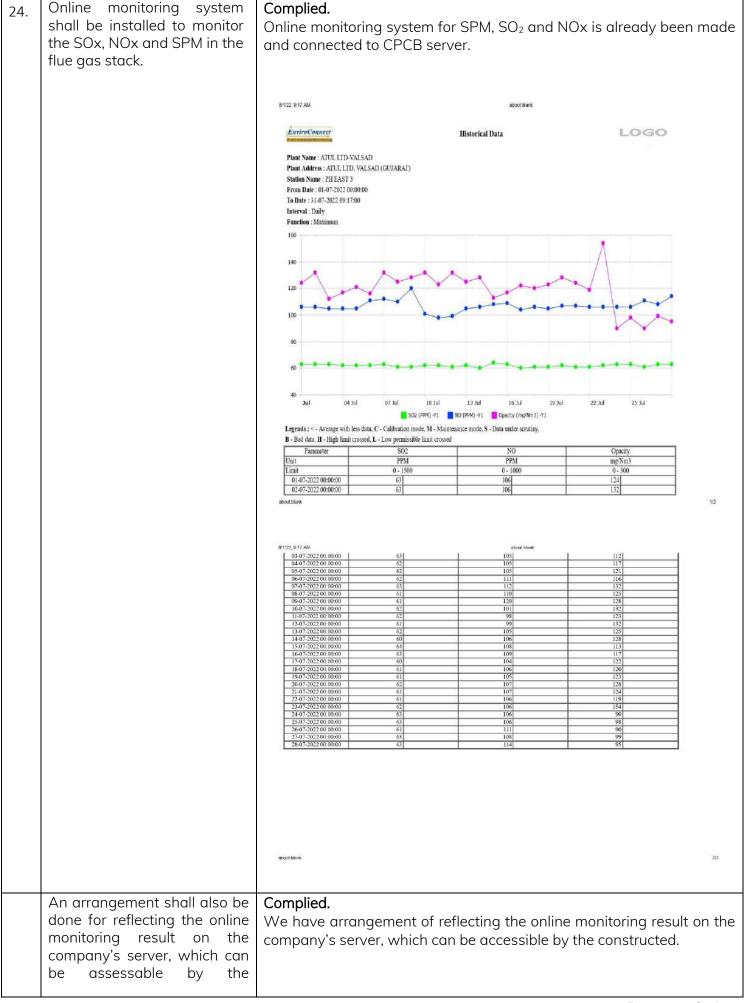
The ESP shall be operated efficiently to ensure that particulate matter emission does not exceed the GPCB norms.

Complied.

GPCB Permissible limit for PM is 50 mg/NM³. Particulate matter emission did not exceed the GPCB norms during report period Which shows that ESP is working efficiently (99.9%).

For PM stack emission data please refer specific condition No.1

The control system shall be designed and integrated in plant DCS in such a way that amended from ESP exceeds specified standard the prescribed in the Environment (protection) Rules 1986 as amended from time to time, utilization of boiler capacity shall so that flue gas emission from the stack with the meets specified standards or boiler shall shut down totally.


Complied.

We have designed and integrated in Plant DCS in such a way that in event of ESP in working not efficiently or something found fault or operation issue due to which flue gas emission go beyond the specified standard prescribed in the Environment (protection) Rules 1986 as amended from time to time than in such cases / occurrence we will intimate to board & authority to stop the operation plant or decrease the load of power plant. We will not restart or increase the load until the control measures are rectified to achieve the 100 percent efficiency.

Flue gas emission from the stack meets with the specified standards prescribed in the Environment (protection) Rules1986 as amended from time to time for the report period.

For stack emission data please refer specific condition No.1

19.	Third party monitoring of the functioning of ESP along with efficiency shall be carried out once in a year through a reputed institute / organization.	Complied. We are regularly monitoring the functioning of ESP along with efficiency once in a year through NABL accredited and MoEF approved agency. The monitoring has been carried out by GPCB approved (schedule - II) M/s. Pollucon Laboratories Pvt.Ltd, Surat NABL approved. ESP efficacy found satisfactory (i.e. 99.9% efficiency).				
20.	Lime stone injection technology shall be adopted to control SO ₂ and it shall be ensured that SO ₂ levels in the ambient air do not exceed the prescribed standards.	Complied. We already have lime injection system to control SO ₂ emission. Ambient Air quality analysis report shows that SO ₂ levels is below the prescribed standards during the report period. For Ambient Air quality data please refer specific condition No.1				
21.	The company shall prepare schedule and carry out regular preventive maintenance of mechanical and electrical parts of ESPS and assign responsibility of preventive maintenance to the senior officer of the company.	Complied. Our company is ISO 14001 certified company and regular preventive maintenance of all the critical equipment is a part of our system. We have standard preventive maintenance schedule activities (monthly, By monthly, yearly) of mechanical and electrical parts or equipment's of ESPS. We have recorded the percentage completion of preventive maintenance assigned work as per schedule. These schedules has been prepared and reviewed approved by senior officer of the company.				
22.	Diesel to the tune of 300 Lit/hr shall be used as a fuel in stand -by D. G. Set (1500	Diesel consumption during report period is given in below table:				
	KVA)		Sr No.	Month	Diesel Consumption (KL/Month)	
			1	April - 2022	0.05	
			2	May -2022	0.6	
			3	June - 2022	0	
			4	July - 2022	0.025	
			5	August - 2022	0.515	
			6	September - 2022	4.1	
23.	The flue gas emission from DG set shall be dispersed through adequate stack height as per CPCB standards. At no time the emissions levels shall go beyond the stipulated standards. Acoustic enclosure be provided to DG set to mitigate the noise pollution.	set (101 Complie We hav	te stack I 0 KVA) c ed. ee provide	neight of 11mt of DG set as per CPCB standards. ed acoustic enclosure to day time and night time	o both DG sets to mitigo	

Adequate storage facility for	Complied.						
he fly ash in terms of closed silos shall be provided at site. No pond shall be constructed.	three silo of 200 MT and Two silo of 300 MT capacity of each,					of each, total generation of these silos so	
	Fly Ash	April 2022	May 2022	June 2022	July 2022	August 2022	September 2022
	Generation (MT)	1341	1717	1365	1569	1635	1183
	Disposal (MT)	1341	1717	1365	1569	1635	1183
	Photograph o	of Close	d silos fo	r Fly ash	/ Botton	n ash:	
si	los shall be provided at site.	three silo of 1200 MT cap report period we have not Fly ash / bott shown in below Generation (MT) Disposal (MT)	three silo of 200 MT 1200 MT capacity, w report period 49 TPD we have not prepare Fly ash / bottom ash shown in below table Fly Ash April 2022 Generation 1341 (MT) Disposal 1341 (MT)	three silo of 200 MT and Tw 1200 MT capacity, which is w report period 49 TPD. We disp we have not prepare ash pon Fly ash / bottom ash generatishown in below table: Fly Ash April May 2022 2022 Generation 1341 1717 (MT) Disposal 1341 1717 (MT) Disposal 1341 1717 (MT) Disposal 1341 1717	three silo of 200 MT and Two silo of 1200 MT capacity, which is well enoure report period 49 TPD. We dispatch the we have not prepare ash pond. Fly ash / bottom ash generation and a shown in below table: Fly Ash April May June 2022 2022 2022 Generation 1341 1717 1365 (MT) Disposal 1341 1717 1365 (MT)	three silo of 200 MT and Two silo of 300 MT 1200 MT capacity, which is well enough for our report period 49 TPD. We dispatch the fly ash we have not prepare ash pond. Fly ash / bottom ash generation and disposal shown in below table: Fly Ash April May June July 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2023 2023 2023 203	three silo of 200 MT and Two silo of 300 MT capacity of 1200 MT capacity, which is well enough for our average report period 49 TPD. We dispatch the fly ash daily from we have not prepare ash pond. Fly ash / bottom ash generation and disposal data for reshown in below table: Fly Ash April May June July August 2022 2

26.	Handling of the fly ash shall be through a closed pneumatic system.	Complied. We are handling of fly ash through a closed pneumatic system which is shown below: Dense phase pneumatic ash handling system
27.	Ash shall be handled only in dry state.	Complied. We are handling ash only in dry state. Sold to cement and brick manufacturer.
28.	The unit shall strictly comply with the fly ash Notification under the EPA and it shall ensure that there is 100% utilization of fly ash to be generated from the unit.	Complied. We are strictly complying fly ash notification under EPA and we are doing 100 % utilization of fly ash to be generated from the unit. For Fly ash / bottom ash generation and disposal data please refer condition No. 25.
29.	The fugitive emission in the work zone environment shall be monitored. The emission shall confirm to the standards prescribed by the concerned authorities from time to time (e.g. Directors of Industrial Safety & Health) Following Indicative guidelines shall be also be followed to reduce the fugitive emission.	Complied. We are regularly (once in month) monitoring fugitive emission in work zone environment to confirm the standard prescribed by the concerned authorities from time to time. And indicative guidelines are strictly followed to reduce the fugitive emission. Measures adopted to control fugitive emission: All process pumps shall be provided trays to collect probable leakage. More weight age on selection of MoC of piping shall be given to avoid leakage/spillage. Overflow system with return line to day tank/storage tank from batch tank will be provided to prevent hazardous material overflow. De - dusting system is provided at coal storage area, closed silo system is available to collect fly ash. Covered conveyer belt system is available for transfer of coal. Water sprinkle system is available to control dust fugitive emission. Proper system is provided for decontamination and effective cleaning of drums. All transfer points are fully enclosed. All roads are RCC & paved on which movement of raw materials or products are take place. Maintenance of air pollution control equipment are to be done regularly.

- All the workers are working with proper PPE's. i.e. boiler suit, dust mask, safety goggles, face shield, safety shoes etc.
- Adequate green belt is developed around the plant to arrest the fugitive emissions.

All handing & transport of coal & Lignite shall be exercised through covered coal conveyors only.

Complied.

All handing & transport of coal & Lignite is done through covered coal conveyors only.

Enclosure shall be provided at coal / lignite loading and uploading operations.

Noted and Complied.

Enclosure is provided at coal | Lignite loading and uploading operations.

Water shall be sprinkled on coal / Lignite stock piles periodically to retain some moisture in top layer and also while compacting to reduce the fugitive emission.

Complied.

We are regularly sprinkled water on coal | Lignite stock piles to retain some moisture in top layer and also while compacting to reduce the fugitive emission.

Close Shed for coal storage

All transfer enclosed.

Noted and Complied.

We have on road coal conveying system through covered coal trucks and in plant coal transferring system through closed conveying system. All transfer points are fully enclosed. Fly ash in terms of closed silos shall be provided at site. Handling of the fly ash shall be through a closed pneumatic system.

Adequate dust suppression / extraction system at crusher house as well as for the coal/ Lignite stock yard and other vulnerable areas shall be provided to abate dust nuisance.

Complied.

We have provided adequate dust extraction system (Dust collector) at crusher house is provided While dust suppression system (water sprinkler system) the coal/ lignite unloading areas to abate dust nuisance.

Accumulated coal dust / fly ash on the ground and surfaces shall be removed / swept regularly and water the area after sweeping.

Internal roads shall be either concreted or asphalted or paved properly to reduce the fugitive emission during vehicular movement.

Complied.

We have adopt practice for coal dust | fly ash is being cleaned regular basis as per schedule that we have set. We are also ensuring that coal dust and fine particles are being loaded to coal handling plant after spraying water on it.

Complied.

Paver blocks have been provided in the ESP and some internal area of power plant. Concrete Road have been built in the surrounding area of Power Plant to reduce fugitive emissions during vehicle movement.

Concrete road at Captive Power Plant

Air borne dust shall be controlled with water sprinkles at suitable locations in the plant.

Coal / Lignite shall be transported through covered trucks only whereas fly ash shall be transported through closed trucks only.

Complied.

Waste water of neutralization pit is being used for dust suppression in coal plant and fly ash handling units. Covered trucks | closed bulkers are being utilized for handling coal and fly ash.

A green belt shall be developed all around the plant boundary and also the roads to mitigate fugitive & transport dust emission.

Complied.

Complied.

Company has already developed more than 36 % of greenbelt in Atul complex

Total Industrial Plot area: 1126078.27 sq.mt

Green belt area: **409030.00 sq.mt** (approx. 36% of total plot area) We planted approximately **39850** trees of difference species in report period at different location given in below table

Location	Nos. of trees
Near river bank Ghat	21350
Parnera Hill, Chichwada road	7300
Hill side colony 5 & Outside area	2000
Secure landfill site Yard	9200
Total	39850

Photograph of Plantation

30. Regular Monitoring of ground level concentration of PM2.5, PM10, NO2, SO2 and Hg shall in the impact zone and its records shall be maintained.

Complied.

We are regularly monitoring ground level concentration of $PM_{2.5}$, PM_{10} , NO_2 , and SO_2 in ambient air of impact zone and its records are maintained as per schedule.

	Ambient air quality levels shall not exceed the standards stipulated by GPCB.	Complied. The location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the upwind and downwind direction as well as where maximum ground level concentration are anticipated. This also covers the impact, if any, of the project plant. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory. The maximum values during the report period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given in condition no.1.
	If at any stage these levels are found to exceed the prescribed limits necessary additional control measures shall be taken be decided in consultation with the GPCB.	Complied. No such case found till date. We have designed and integrated in-plant DCS. In event of ESP is not working efficiently or operation issue, due to which flue gas emission goes beyond the specified standard prescribed in the Environment (protection) Rules 1986 as amended from time to time, then in such cases occurrence we will intimate to board & authority and stop the operation plant or decrease the load of power plant. We will not restart or increase the load until the control measures are rectified to achieve the 100 percent efficiency.
A.4 S	SOLID/ HAZARDOUS WASTE:	
31.	The company shall strictly comply with the rules and regulations with regards to handling and disposal of Hazardous waste in accordance from time to time.	Complied There is only one Hazardous waste from the project i.e. Used oil. The used oil generation and disposal quantity from the project for the report period is Nil . The same was given to GPCB authorized vendors only in line with the regulation.
	Authorization from the GPCB shall be obtained for collection /treatment /storage disposal of hazardous waste	Complied. We have CCA Amendment No. AWH – 105110, dated November 16, 2019
32.	Hazardous waste sludge shall be packed stored in separate designated hazardous waste storage facility with impervious bottom and leachate collection facility, before its disposal.	Complied There is only one Hazardous waste from the project i.e. Used oil. It is stored in drum. The used oil generation and disposal quantity from the project for the report period is Nil. The same was given to GPCB authorized vendors only in line with the regulation.
33.	The used oil shall be sold to only to the registered recyclers / refiners.	Complied. Used oil is being sold to GPCB authorized vendor.
34.	The discarded containers / barrels /bags/ liners shall be sold only to the registered recycler.	Complied. No bags / liners are being utilized for Power Plant.

35.	For storage of fly ash closed silos of adequate capacity shall be provided.	Complied. We have three closed silo of 200 MT and Two silo of 300 MT capacity of each, total 1200 MT capacity, which is well enough for our average generation of 49 TPD.						
	No ash pond shall be construed in the project.	Complied. No ash pond is construed in the project.						
36.	The fly ash shall be supplied to the manufacturers of fly ash based products such as cement, concrete blocks, bricks, panels, etc.	Complied. Fly ash is being given to cement and bricks manufacturers and also being used for our own bricks manufacturing unit.						
	The unit shall strictly comply with the Fly Ash Notification under EPA and it shall be ensured that there is 100% utilization of fly ash to be	We are strictly complying fly ash notification under EPA and we are ensuring that that is 100 % utilization of fly ash to be generated from the unit.					enerated from	
	generated from the unit.	table:	om asn g	generatio	on data t	or report	period is si	hown in below
		Fly Ash	April 2022	May 2022	June 2022	July 2022	August 2022	September 2022
		Generation (MT)	1341	1717	1365	1569	1635	1183
		Disposal (MT)	1341	1717	1365	1569	1635	1183
37.	All possible efforts shall be made for co - processing of the Hazardous waste prior to disposal into TSDF/CHWIF.		is Nil. T	he same	e was gi			project for the orized vendors
A.5 9	LSAFETY:							
38.	The project management shall strictly comply with the provisions made in the Factories Act, 1948 as well as manufacturer, storage and Impact of Hazardous chemicals Rules 1989 as amended in 2000 for handling of hazardous chemicals.	We are complying all the provisions of Factories act, all the rules and regulation led by MSIHC, 1989. Compliance of MSIHC rule is attached as Annexure III						
39.	Necessary precautions like continuous monitoring of hot spot (ignite lignite) using temperature detection systems water sprinklers, avoiding stacking of lignite near stream pipeline etc. shall be made for storing lignite to prevent fire hazard	Lignite is usu possible. Ligi	nité is r ater spro	ot being	g stored	for not	more than	t site as far as n 3 - 4 Days. ole for the fuel

40.	All the risk mitigation measures, general & specific recommendations mentioned in risk Assessments Report shall be implemented.	Complied. All the risk mitigation measures, general & specific recommendations mentioned in risk assessments report are implemented.			
41.	A well designed fire hydrants system shall be installed as per the prevailing standards	Complied. A well designed tender hydrant system is adequate and as per standards.			
		Fire hydrant Network details:			
		Single Hydrant point: 192Nos. Double hydrant point: 07 Nos. Fixed monitor: 11Nos. Hose boxes: 30 Nos. Central hose station: 10 Nos. Hose pipe: 15 mts. 250 Nos. Branch pipes (jet type): 50 Nos. Foam making branch pipe: 03 Nos. Foam compound: 200 liter Foam generator with high expansion foam: 2 Nos.			
42.	Personal protective Equipment shall be provided to worker and its usage shall be ensured and supervised.	· ·			
43.	First Aid Box and required antidotes for the chemical used in the unit shall be readily available in adequate quantity at all the times	antidotes are kept in the medical Centre.			
44.	Occupational health surveillance of the workers shall be done its records shall be maintained. Pre employment and periodical medical examination for all the worker shall be undertaken as per the Factories Act &rules.				

A. Pre - employment check - up:

- 1. Vision
- 2. Colour blindness
- 3. CBC
- 4. Urine
- 5. Height
- 6. Weight
- 7. B/P
- 8. Pulse
- 9. Habit
- 10. Personal History
- 11. Family History
- 12. Identification Mark

B. Annual Checkup:

- 1. Physical checkup
- 2. Vision
- 3. Blood
- 4. Urine
- 5. PFT
- 6. ECG

Our occupational health center & pathology lab is equipped with necessary facilities under supervision of factory medical officer with trained three EHS persons.

Medical Facilities:

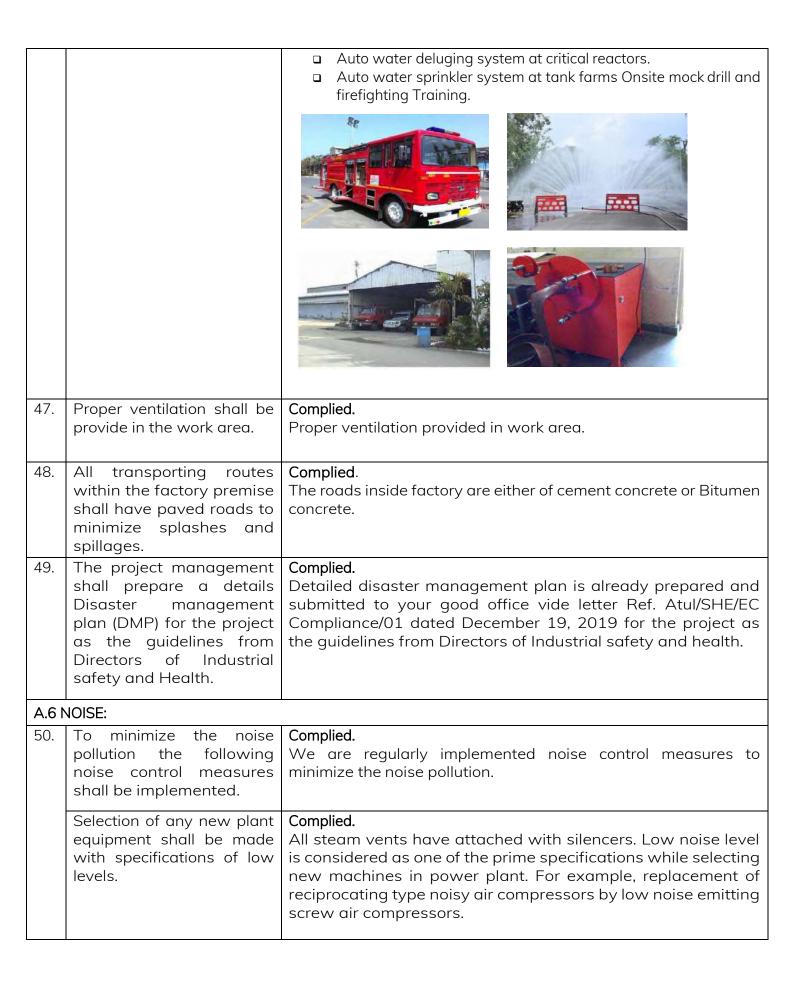
- ☐ First Aid boxes in all plants.
- □ Central Ambulance Room in the middle of the factory.
- Two Ambulance Vans. Out of which one is equipped with ICU facilities.
- Medical Center.
- □ Three full time AFIH certified doctors.
- Equipped with 3 Beds.
- □ Full equipped Pathological lab with advanced diagnostic equipment.
- ECG Equipment.
- Cardiac monitor.
- Defibrillator.
- □ Finger pulse Oxymeter.
- Pulmonary Function Test Apparatus.
- 02Administration.
- Antidotes with routine Important and Vital lifesaving Drugs.
- □ Tie up with Kasturba Hospital, Valsad, and Pardi Hospital, Pardi, respectively 7 kms and 3 kms away from Atul.

We also have tie up with external two hospitals (Pardi Hospital and Kasturba Hospital). We have medical checkup schedule once in quarter for Insecticide plant's employees Other necessary items including First - aid medicines, antidotes and equipment as prescribed in the schedule the under Rule - 68 U (b) of the Gujarat factories rules are also been provided.

45. Flameproof fittings shall be provided at the proposed power plant.

Complied.

Flame proof fittings are provided.


46. Adequate firefighting facilities shall be provided at the proposed power plant

Complied.

Firefighting facilities are adequate.

The risk to people after a fire has started shall largely depends on the adequacy and maintenance of means to escape, the alarm system, training of the workforce in fire routine and evacuation procedures at Atul Ltd management has proposed to employ well - resourced and adequate firefighting network. Details regarding the firefighting capacity of the unit are given below:

- □ Four full fledged fire hydrant system in the company
- Water Storage Capacity 50 million Liters
- □ Total hydrant post/ monitors –780
- □ Total length of hydrant line 15km
- □ Fire Fighting Equipment
 - DCP 1350
 - CO₂ 776
 - Foam 05Trolly
- Fire Tenders
 - One fire tender having 1800 Lit water capacity
 - Second multipurpose fire tenders having 5000 Lit water & 500 Foam
 - Third Multipurpose tender having facility of DCP 500
 Kg, Foam- 500 lit and Water 4500Lit.
- □ SCBA sets 35nos.
- Emergency alarm system 532 nos. points spread across the company.
- □ Fire station manned round the clock with Siren and Annunciation System.
- □ Regular Testing on every Monday.
- Smoke detectors in the office and labs.

Manufacturer / supplier of major noise generating machines / equipment like air compressor. Feeder pumps, turbine generators, etc. shall be instructed to make required design modifications wherever possible regulatory norms with respect to noise generation for individual units.	Complied. We always take care while purchasing major noise generating machines equipment like air compressor, feeder pumps, turbine generators, etc., strictly instructed or emphasized to supplier to give less noise generating equipment's as much as possible to regulatory norms with respect to noise generation for individual units.
Regular maintenance of machinery and vehicles shall be undertaken to reduce the noise impact.	Complied. We have routine and preventive maintenance schedule of machinery / equipment and vehicles to be undertaken to reduce the noise impact.
Noise suppression measures such as enclosures, buffers and / or protective measures shall be provided.	Complied. Acoustic enclosures are provided on DG sets. Silencers have been provided on main steam vent valves of Boilers.
Employees shall be provided with ear protection measures like earplugs or earmuffs.	Complied. We have provided ear protection measures like earplugs or ear muffs to all employees on regular basis.
Proper oiling lubrication and preventive maintenance shall be carried out of the machinery and equipment to reduce noise generation.	Complied. Proper oiling lubrication and preventive maintenance is carried out of the machinery and equipment to reduce noise generation.
Construction equipment generating minimum noise vibration shall be chosen.	Noted & Complied. We always use minimum noise vibration generation construction equipment.
Ear plugs and / muffs shall be made compulsory for the construction workers working near the noise generating activities / machines / equipment.	Complied. Our company has well laid down OHS policy to use Proper PPE's by all employees in plant area. Ear plugs and / muffs are compulsory for the construction workers working near the noise generating activities / machines / equipment.
Vehicles and construction equipment with internal combustion engines without proper silencer shall not be allowed to operate.	Noted & Complied. We are permitted those vehicles and construction equipment with internal combustion engines with proper silencer and spark arrestor.
Construction equipment meeting the norms specified by EP Act, 1986 shall only be used.	Noted & Complied. We are only using construction equipment meeting the norms specified by EP Act, 1986.

_			
		Noise control equipment and baffling shall be employed on generators especially when they are operated near the residential and sensitive areas.	Noted & Complied. We do take care of Noise control equipment and baffling will be employed on generators especially when they are operated near the residential and sensitive areas.
		Noise levels shall be reduced by the use of adequate mufflers on all motorized equipment.	Noted &Complied. We are using mufflers on all motorized equipment to reduce noise levels.
Ę,	51.	The overall noise level in and around the plant area shall be kept well within the prescribed standard by providing noise control measures including acoustic insulation, hoods, silencers, enclosures, vibration, dampers etc. on all sources of noise generation.	Complied. The overall noise level in and around the plant area to be kept well within the prescribed standard by providing noise control measures including acoustic insulation, hoods, silencers, enclosures, vibration, dampers etc. on all sources of noise generation provided.
		The ambient noise levels shall confirm to the standards prescribed under the Environment (protection) Act and Rules. Workplace noise levels for workers shall be as per the factories Act and Rules.	Complied. The ambient and workplace noise level confirms to the standard prescribed under EPA. The same is being regularly monitored. The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards. Noise monitoring data of report period is attached as Annexure IV. Summary is given below:
			Noise level monitoring data (Day Time)

Sr No.	Location	Permissible Limits	Values for the period April 2022 – Septembe 2022		
			Min.	Max.	Avg.
1	66KVA substation	75	62.7	67.9	65.6
2	Opposite shed D	75	62.8	69.4	66.1
3	ETP West site	75	64.7	70.2	67.2
4	ETP North site	75	64.3	69.2	67.3
5	Near TSDF	75	54.3	59.2	57.2
6	Near Main guest house	75	60.3	68.6	65.5
7	At Wyeth Colony	75	56.8	62.5	59.7
8	Gram Panchayat Hall	75	61.5	69.5	64.3
9	Near Main Office North site	75	55.9	60.0	58.1
10	Haria Water tank	75	64.0	67.4	65.9

Noise level monitoring data (Night Time)

Sr No.	Location	Permissible Limit	Values for the period April 2022 – September 2022			
			Min.	Max.	Avg.	
1	66KVA substation	70	50.7	54.0	52.4	
2	Opposite shed D	70	52.7	55.1	53.8	
3	ETP West site	70	51.2	55.3	53.4	
4	ETP North site	70	53.2	60.7	56.2	
5	Near TSDF	70	45.8	51.9	49.9	
6	Near Main guest house	70	50.1	56.5	53.2	
7	At Wyeth Colony	70	48.9	55.9	52.6	
8	Gram Panchayat Hall	70	49.8	53.8	52.1	
9	Near Main Office North site	70	49.5	56.7	53.2	
10	Haria Water tank	70	50.7	53.4	52.2	

A.7 GREEN BELT AND OTHER PLANTATION:

develop 52. shall The unit green belt in at least 68000 sq. area within the premises. Green belt shall comprises of rows of varying height tall native trees with thick foliage in the periphery of the factory premises

Complied.

Green belt is developed and we plant more than 50000 plants every year. Green belt is comprised of at least minimum 3 to 4 raw plantation with minimum height of native trees is 5 to 6 Mtr with thick foliage in the periphery of the factory premises. Proper plantation is done all around the plant boundary and also the roads to mitigate fugitive & transport dust emission.

Total Industrial area: 1126078.27 sq.mt

Total Green belt area: 409030.00 sq.mt (approx. 36% of total industrial plot area)

The unit shall also take up adequate plantation at suitable open land on road sides and other open areas in nearby villages or schools in consultation with the Gram panchayat / GPCB and submit an action plan for the same for next three years to the GPCB.

Complied.

Company has already developed more than 36 % of greenbelt in Atul complex

Total Industrial Plot area: 1126078.27 sq.mt

Green belt area: **409030.00 sq.mt** (approx. 36% of total plot area) We planted approximately **39850** trees of difference species in report period at different location given in below table

Location	Nos. of trees
Near river bank Ghat	21350
Parnera Hill, Chichwada road	7300
Hill side colony 5 & Outside area	2000
Secure landfill site Yard	9200
Total	39850

Photograph of Plantation

B.OTHER CONDITIONS:

54. In the event of failure of any pollution control system adopted by the unit, the unit shall be safely closed down and shall not be restarted

Complied.

No such case during the repot period. However, if such case happens we ensure to close down the unit.

	until the desired efficiency	
	of the control equipment	
	has been achieved	
55.	All the recommendation,	Complied.
55.	mitigation measures,	All environmental protection measures and safeguards proposed
	environments protection	in the project report has been fully complied and report
	measures and safeguard	submitted to your good office vide letter Atul/SHE/EC Compliance/06
	proposed in the EIA report	dated December 19, 2019.
	of the project prepared by	
	M/s ; Eco chem Sales	
	&Service, Surat & submitted	
	vide letter no NIL dated 03/11/2015 and	
	03/11/2015 and commitments made during	
	presentation before SEAC,	
	proposed in the EIA report	
	shall be strictly adhered to	
	in letter and spirit.	
56.	All the recommendation of	Complied.
	CREP guidelines as may be	Company is following strictly recommendations mentioned in
	applicable from time to time shall be following	CREP guidelines and compliance status is given as Annexure V.
	vigorously.	Affilexule V.
57.	A separate environment	Complied.
37.	management cell with	Implementation of stipulated environmental safeguards were
	qualified staff shall be set	ensured by the Company's SHE department.
	up for implementation of	
	stipulated environmental	Organogram of SHE Department
	safeguards	en and bec
		Chairman & Managing Director
		Whole Time Director
		President – Utility & Services
		IN C CUE IN L
		VP – Corporate SHE VP – Legal Assurance SHE VP – DOH
		Menager Manager Dockins
		Manager Fire Officers Manager Civisional Male Nurses Lab Tech
		Process Safety SHE Matagers
		Chernists
		Worker
58.	The project authorities	Noted & Complied
	must strictly adhere to	We are strictly adhere to stipulations made by the Gujarat
	stipulations made by the	· , , , , , , , , , , , , , , , , , , ,
	Gujarat Pollution Control Board (GPCB), state	statutory authority.
	Board (GPCB), state government and statutory	
	authority.	
1		

59.	No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority.	Complied. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority.
60.	The above conditions will be enforced, inter - all under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991 along with their amendments and rules.	Noted.
61	The project proponent shall comply all the conditions mentioned in ' The Companies (Corporate Social Responsibility Policy) Rules, 2014 and its amendments from time to time in a letter and spirit.	Complied. Details of CSR projects done during report period is given in Annexure - VI.
62.	The project proponent shall ensure that unit complies with all the environment protection measures, risk mitigation measures and safeguards recommended in the EMP report and Risk .Assessments study report as well as proposed by project proponent.	·

The project authorities shall 63. earmark adequate funds to implement the conditions stipulated by SEIAA as GPCB along with the implementation scheduled all the conditions stipulated herein. The funds so provided shall not be diverted for any other purpose.

Complied.

EMP measures for the project are implemented and investment details submitted vide our letter Atul/SHE/EC Compliance/06 dated December 19, 2019.

Further, a separate budget is being allocated every year to comply with all the legal requirement stipulated by SPCB, CPCB & MoEF apart from upkeep of pollution control systems and facilities. Total expenditure made for overall EMS compliance during the report period is given in below table:

Sr No.	Parameter	Recurring Cost (Rs. In lacs) For the report period April 2022- September 2022
1	Air Pollution Control	2460
2	Liquid Pollution Control	
3	Environmental Monitoring and Management	19
4	Solid waste Disposal	126
5	Occupational health	15
6	Green belt	15
Total		2635

64. The applicant shall inform the public that the project has been accorded environmental clearance by the SEIAA and that the copies of the clearance letter are available with the GPCB and May also be seen at website of SEIAA / SEAC/ GPCB.

Complied.

We have informed the public that the project has been accorded environmental clearance by the SEIAA and that the copies of the clearance letter are available with the GPCB and also be seen at website of SEIAA/SEAC/GPCB.

This shall be advertised within seven days from the date of the clearance letter, in at least two local newspapers that are widely circulated in the region, one of which shall be in the Gujarat.

Complied.

We have given advertisement dated 29.05.2016 in local newspapers that are widely circulated in the region, one of which is given in the Gujarati language and the other in English.

A copy each of the same shall be forwarded to the concerned Regional office of the Ministry.

Complied.

A copy each of the same forwarded to the concerned Regional office of the ministry vide our letter dated January 27, 2017.

65.	The project proponent shall also comply with additional conditions that may be imposed by the SEAC or the SEIAA or any other competent authority for the purpose of the environmental protection and management.	Complied. No additional conditions so far imposed by the SEAC or the SEIAA or any other competent authority for the purpose of the environmental protection and management.
66.	It shall be mandatory for the project management to submit half - yearly compliance report in respect of the stipulated prior environmental clearance terms and condition in hard and soft copies to the regulatory authority concerned on 1st June and 1st December of each calendar year.	Complied. We regularly submit the half - yearly compliance report. The implementation of the project along with environmental actions plans are monitored by the authority time to time. We are regularly submitting half yearly compliance reports to the authority & same is being updated on website.
67.	Concealing factual data or submission of false / fabricated data and failure to comply with any of conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986.	Noted.
68.	The project authorities shall also adhere to the stipulations made by the Gujarat Pollution Control Board.	Complied.
69.	The SEIAA may revoke or suspend the clearance. If implementation of any of the above conditions is not found satisfactory.	Noted
70.	The company in a time bound manner shall implement these conditions. The SEIAA reserves the stipulate additional conditions, if the same is found Necessary.	Noted.

71.	The project authorities shall inform the GPCB, Regional Office of MoEF and SEIAA about the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	We have communicated with the regional officer of MoEF & CC towards the status of work and financial closure time to time. We have also submitted six monthly EC Compliance report periodically in which said
72.	This environmental clearance is valid for seven years from the date of issue.	Noted.
73.	Any appeal against this environmental clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 day as prescribed under section 16 of the National Green Tribunal Act, 2010.	Noted.

				APR. 2022	MAY. 2022	JUN. 2022	JUL. 2022	AUG. 2022	SEPT. 2022
			D	etails of flu	ie gas stacl	<			
r. No.	Stack Details	Paramenter	Permissible	Obtained	Obtained	Obtained	Obtained	Obtained	Obtained
			Limits	Value	Value	Value	Value	Value	Value
			1						() () () () ()
1	FBC boiler El	РМ	100 mg/Nm3	East 56.7	Not Running	Not Running	Not Running	52.4	Not Running
i d	I Be boiler Ei	1 101	100 mg/wms	50.7	Notrialing	rvocridining	rvochoming	34.7	(voc nomini
		SO ₂	600 mg/Nm3	291				284	
		NOx	600 mg/Nm3	276				265	
		ITOX	oco mg, ano	27.0				200	
2	FBC boiler E2	PM	100 mg/Nm3	Not Running	62.1	56.3	54.8	Not Running	59.4
		SO _z	600 mg/Nm3		578	296	289	8	301
		NOx	600 mg/Nm3		580	272	268	2	279
3	FBC boiler E3	PM	100 mg/Nm3	39.6	44	4 D.6	49.6	44.9	51.7
		SO ₂	600 mg/Nm3	277	264	285	282	289	294
		NOx	600 mg/Nm3	286	270	266	270	270	261
	Hot Oil Unit	DIV	1500	20.7	Not Dire	100	20:4	37.0	24.0
4	(Resorcinol Plant)	PM	150.0 mg/Nm3	39.7	Not Running	48.9	28.4	37.2	31.8
	(resortants riong	SO _z	100 ppm	4.9		15.6	5.2	4.9	5.6
		NOx	50 ppm	20.6		26.4	21.7	148	11.2
5	DG set 1010 KVA	PM	150 mg/Nm ³	33.1	48.9	33.6	40.8	46.8	61.6
10.774	(Standby)	SO ₂	100 ppm	6.25	3.84	4.9	584	4.84	7.4
	(Cidnab),	NOx	50 ppm	34.2	28.6	27.1	24.6	21.6	29.4
			I I	West Site					
6	FBC boiler W1	РМ	100 mg/Nm3	51.7	47.1	56.4	64.2	61.3	Not Running
		SO ₂	600 mg/Nm3	560	290	282	296	284	
		NOx	600 mg/Nm3	571	264	274	258	276	
7	Hot Oil Plant shed-B	РМ	150.0	41.2	54.8	48.9	40.6	51.9	40.7
	Sent Service Artists of Management (Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management Artists of Management (Management Artists of Management Artists of Management (Management Artists o	25	mg/Nm3	35005	S-senier	1000000	3.550	5	100000
		SO ₂	100 ppm	7.3	10.2	15.6	12.7	14.8	10.2
7-251		NOx	50 ppm	27.4	21.6	26.4	29.3	23.7	26.1
8	Oil burner Shed B (Standby)	PM SO ₂	150.0 mg/Nm3 100 ppm	Not Running	Not Running	Not Running	Not Running	Not Running	Not Runnin
		NOx	50 ppm	1					
9	Boiler (50 TPH 2 Nos)	РМ	50 mg/Nm3	38.7	33.2	26.8	43.6	40.2	36.2
	(New boilers) W2,W3	SO ₂	600 mg/Nm3	291	265	272	284	281	291
	772,773	NOx	300 mg/Nm3	282	282	266	218	270	284
		Mercury	0.03 mg/Nm3	ND	ND	ND	ND	ND	ND
10	DG set 1500 KVA	РМ	150.0	33.1	56.8	3 D.8	36.9	42.8	53.2
	(Stand By)		ma/Nm3	0.05	7.1	F.0	205		0.4
		SO ₂ NOx	100 ppm	6.25	7.1 35.4	5.2	6.25	5.9	8.1
		IAOX	50 ppm	34.2		31.7	23.6	29.4	21.6
11	Thermic fluid heater	РМ	150.0	North 5	42.7	49.7	55.9	45.8	54.2
**	of	100	mg/Nm3	09.1	72./	73.7	33.3	73.0	J4.2
	DCO/DAP Plant	SO ₂	100 ppm	6.8	8.5	10.8	13.2	8.4	7.2
		NOx	50 ppm	24.9	19.6	17.2	21.5	15.4	19.8

Annexure II: Ambient Air monitoring Results

Station	Parameter	Limit micro gm/NM³	April 2022	Мау 2022	une 2022	uly 2022	August 2022	September 2022
66 KV	PM 2.5	60	32.0	34.0	32.0	33.0	31.0	29.0
66 KV	PM10	100	45.0	53.0	51.0	53.0	45.0	54.0
	SO ₂	80	13.7	16.8	21.6	17.9	22.6	16.9
	NO_2	80	26.3	24.9	27.3	25.4	24.7	27.9
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	6.5	5.9	4.8	4.1	ND	ND
Opposite	PM 2.5	60	30.0	32.8	30.1	10.3	13.0	16.7
Shed D	PM10	100	41.0	54.8	46.7	34.5	41.8	15.2
	SO ₂	80	14.5	17.2	13.3	10.1	19.8	13.1
	NO_2	80	21.0	25.6	17.8	14.6	12.7	17.3
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
West site	PM 2.5	60	29.0	32.0	36.0	34.0	32.0	26.0
ETP	PM10	100	39.0	55.0	56.0	52.0	59.0	50.0
	SO ₂	80	11.6	22.9	20.7	22.4	23.7	18.0
	NO_2	80	25.9	27.1	26.1	24.9	26.3	26.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
North ETP	PM 2.5	60	28.0	30.0	34.0	30.0	33.0	30.0
NOIGILII	PM10	100	42.0	54.0	50.0	55.0	58.0	51.0
	SO ₂	80	15.3	20.6	18.4	16.8	19.4	17.4
	NO_2	80	17.3	25.1	28.4	26.3	31.2	28.1
	Ammonia	400	4.6	4.3	4.1	3.4	ND	ND
	HCI	200	ND	4.3 ND	ND	ND	ND ND	ND
TSDF	PM 2.5	60	31.0	35.0	31.0	35.0	29.0	27.0
I SUF	PM 2.5 PM 10	100	38.0	51.0	54.0	51.0		53.0
		80	12.0	18.5	16.9		49.0	18.2
	SO ₂					14.3	16.9	
	NO ₂	80	22.8	26.3	24.3	28.4	27.9	26.5
	Ammonia	400	3.1	2.6	3.2	3.9	ND	ND
NA Carat	HCI	200	ND	ND	ND	ND 1.4.6	ND	ND
Main Guest	PM 2.5	60	26.5	34.8	25.3	14.6	19.7	19.2
House	PM10	100	37.6	53.6	54.8	39.2	40.2	45.5
	SO ₂	80	15.6	20.4	13.8	9.8	15.6	15.1
	NO ₂	80	17.0	29.3	20.1	14.0	12.4	17.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
NA /	HCI	200	ND	ND	ND	ND	ND	ND
Wyeth	PM 2.5	60	25.0	31.0	32.0	29.0	28.0	31.0
Colony	PM10	100	36.0	52.0	53.0	50.0	57.0	48.0
	SO ₂	80	14.1	20.7	19.2	18.5	19.4	16.4
	NO ₂	80	24.1	29.5	25.0	26.7	30.2	30.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Gram	PM 2.5	60	31.6	34.6	30.5	14.3	18.4	15.3
panchayat	PM10	100	41.7	52.6	50.7	38.4	34.1	31.9
hall	SO ₂	80	13.6	21.9	10.7	7.6	7.6	17.4
	NO_2	80	23.7	25.9	20.4	14.7	11.7	18.4
	Ammonia	400	ND	ND	ND	ND	ND	ND

	HCI	200	ND	ND	ND	ND	ND	ND
Main office,	PM 2.5	60	30.6	35.6	26.4	11.4	15.3	18.0
North site	PM10	100	39.0	52.0	49.6	37.9	45.2	46.9
	SO_2	80	12.4	21.3	10.8	8.9	14.4	16.2
	NO_2	80	22.5	25.2	16.7	14.6	11.3	21.7
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Haria water	PM 2.5	60	26.0	31.5	29.3	12.5	13.4	17.5
tank	PM10	100	37.3	55.3	53.6	39.1	40.8	46.9
	SO ₂	80	11.6	16.4	10.8	10.6	19.7	16.7
	NO_2	80	24.5	25.3	16.3	14.8	11.8	19.2
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Annexure III: Compliance of MSIHC Rule

THE MANUFACTURE, STORAGE AND IMPORT OF HAZARDOUS CHEMICAL RULES, 1989

Sr			Compliance				
1	Rule 2 (b) and 3 Schedule 5	Duties and corresponding rule of legal authority	Noted.				
2	Rule 2 (e)(ii),4 (1) (b), 4 (2)(1) and 6 (1)(b) Schedule 2	Isolated storage at installation	Not applicable				
3	Rule 4 – 2 (a)	Identified the chemical due to which Major Accident Hazards(MAH) is applicable	Chemical name given as below: 1. Chlorine 2. Formaldehyde 3. Sulphur trioxide 4. Oleum 65% 5. Phosgene				
4	Rule 4 – 2 (b)(ii)	Provide to the persons working on the site with the information, training and equipment including antidotes necessary to ensure their safety	Training provided at regular intervals. Records are attached as Annexure – 1.				
5	Rule 5 (1) Schedule 6	Information to be furnished regarding notification of a major accident	Noted. Whenever any incident takes place we are providing information regarding the same.				
6	Rule 7 (1) Schedule 7	Information to be furnished for the notification of sites	We are regularly updating schedule 7. It was last submitted to DISH dated 14/03/2022. Attached as Annexure – 2.				
7	Rule 8	Updating of the site notification changes in the threshold quantity -	When there is any change in threshold quantity we update it in the site notification (Schedule 7)				
8	Rule 10 (1) Schedule 8	Prepared a safety report on that industrial activity containing the information specified in Schedule 8 and has sent a copy of that report to the concerned authority. (Every three year or any changes made)	last submitted to DISH dated 25/11/2020.				

9	Rule 10	The occupier shall update the safety audit report once a year by conducting a fresh safety audit	We are regularly updating and preparing safety audit report. Last submitted to DISH with progress compliance dated 05/01/2022. Recently we carried out same in March 2022. Attached as Annexure – 4.				
10	Schedule 11		We are regularly updating and preparing On site Emergency plan. Last submitted to DISH dated 30/03/2022. Attached as Annexure – 5.				
11	Rule 13 (4)	The occupier shall ensure that a mock drill of the on-site emergency plan is conducted every six months.	Mock drills are conducted at regular intervals. Last mock drill conducted on 08/03/2022. Mock drill report attached as Annexure – 6.				
12	Rule 13 (5)	A detailed report of the mock drill conducted under sub-rule (4) shall be made immediately available to the concerned Authority.	A detailed report of mock drill is submitted to DISH on 31/03/2022.				
13	Rule 14 (1) Schedule 12	Preparation of off-site emergency plan by the authority.	Noted. Prepared by the collector of Valsad district and we are providing the details.				
14	Rule 14 (4)	The concerned authority shall ensure that a rehearsal of the off-site emergency plan is conducted at least once in a calendar year.					
15	Rule 15 - 1 (b)	Occupier shall inform persons outside the site either directly or indirectly. The safety measures and the "Do's' and 'Don'ts' which should be adopted in the event of a major accident to be shared.	Safety measures are provided to the person under section 41-B of factory act. Attached as Annexure – 8.				
16	Rule 15 (2)	The occupier shall take steps required under sub- rule (1) to inform persons about an industrial activity, before that activity is commenced.	Information on industrial activity is provided to persons under 41 B and 68 K of factory act.				
17	Rule 16	Disclosures of information	Information is being provided to all under section 41-B of the Factory Act.				
18	Rule 17 Schedule 9	Safety Data Sheet	Safety data sheet available for all chemicals.				
19	Rule 17 (3)	Every container of a hazardous chemical shall be clearly labelled or marked.	Every container of hazardous chemical is proper labelled and marked.				
20	Rule 18 (2)	IMPORT OF HAZARDOUS CHEMICALS:	Noted. Is being complied.				

Annexure IV: Noise Data Noise level monitoring data (Day Time):

Sr	Location	Noise L	Permissible					
No.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Limits, dBA
1	66KVA substation	66.2	67.9	66.3	67	62.7	64	75
2	Opposite shed D	64.6	66.7	67.6	69.4	65.9	62.8	75
3	West site ETP	67.5	70.2	68.2	67.2	65.9	64.7	75
4	North site ETP	69.2	67.3	69.1	67.8	66.4	64.3	75
5	Near TSDF	57.8	54.3	56.9	58.2	57.3	59.2	75
6	Near main guest house	68.6	66.5	68.2	66.9	60.3	62.8	75
7	At wyeth colony	58.1	56.8	58.8	61.7	60.8	62.5	75
8	Gram panchayat hall	69.5	67.9	63.2	61.5	62.4	61.8	75
9	Near main office North site	57.3	55.9	57.4	59.4	58.7	60	75
10	Haria water tank	64.0	67.4	65.5	66.8	66.8	64.9	75

Noise level monitoring data (Night Time):

Sr	Location	Noise L	Permissible					
No.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Limits, dBA
1	66KVA substation	51.5	50.7	53.6	51.9	52.9	54	70
2	Opposite shed D	53.5	55.1	53.7	52.7	53.4	54.5	70
3	West site ETP	51.2	54.6	52.4	54.2	55.3	52.9	70
4	North site ETP	60.7	58.4	55.1	54.6	55.4	53.2	70
5	Near TSDF	50.6	50.9	51.9	50.8	49.7	45.8	70
6	Near main guest house	53.2	56.5	54.3	52.1	50.1	53.4	70
7	At wyeth colony	48.9	51.3	52.6	53.6	55.9	53.8	70
8	Gram panchayat hall	51.6	49.8	53.8	51.2	53.7	52.6	70
9	Near main office North site	50.2	49.5	52.9	54.8	55.3	56.7	70
10	Haria water tank	52.8	53.2	51.2	53.4	52.4	50.7	70

Annexure V: CREP Compliance

Activity			
Code No.	Action Point	Compliance Status	Remarks
1	Implementation of Environmental Standards	Complied	APCM are already in place and maintained. We ensured that at no time the emission level will go beyond the stipulated standards prescribed limits.
2	Particulate matter emission reduction	Complied	We have installed high efficiency electro static precipitator (4 field) with 99.9% efficiency to control of flue gas emission (particulate matter emission) within the permissible limit.
3	New / expansion power projects to be accorded Environment Clearance	Complied	EC awarded for setting up an additional power plant of 22 MW, Dated May 20, 2016 EC No. SEIAA/GUJ/EC/1(d)/340/2016
	Development of SO2 & NOx emission standards.	NA	Action by CPCB
4	Development standards for of guide mercury lines / & other	NA	Action by CPCB
	Review of stack height requirement	NA	Action by CPCB
	Install / activate meters / continuous monitoring systems with calibration system.	Complied	The boiler stack is equipped with online continuous monitoring and also kept in CC TV camera surveillance.
5	Use of beneficiated coal	As soon as it is viable option with respect to its limited availability and proximity of source, will be used.	We are purchasing Indian coal from government collieries and hence forced to use the same. We will use Beneficiated coal as & when available.
	Use of abandoned coal mines for Ash disposal	NA	Not Applicable
6	Provide dry ash to the users	Complied. Ongoing process	Being given to local brick manufacturers and Cement industries. We have done agreement between Ambuja cement Ltd and Atul Ltd For supply of dry ash.
6	Provide dry ash free of cost	Complied	-
	Adhere to schedule by State Dept.	NA	Action by State Dept.
	Environment Clearance	Complied	-

	Existing plants shall		
	adopt any of systems		
	mentioned in 13(1)		
	Fly ash Mission shall	NA	Action by GOI
	prepare guideline	, .	7 (30.37. 2)
	New plants shall		
	promote adoption of	NA	_
	clean coal & clean	INA	
	power		
7	CC&A status	Complied	Consent no. AWH no. 105110 valid up to September 30, 2025.
	Compliance with respect		Daing abadyad & warified by Danianal
8	to norms prescribed in	Complied	Being checked & verified by Regional Office of GPCB time to time.
	CC&A for last one year		Office of GPCB time to time.
	Overall compliance with		Fully complied with all the condition
9	respect to charter	Yes	Fully complied with all the condition stipulated in EC as well as CC&A.
	(Yes/No)		Supulated in EC as Well as CCAA.

		Ltd. to September 2022		
Sr. No.	Name of Project	Location Village, District (State)	Amount Budgeted for the FY 2022-23 (in ₹)	Amount Budgeted for the FY 2022-23 (in ₹)
1	Enhancement of educational practices in Kalyani Shala	Atul, Valsad (Gujarat)	40,00,000	16,57,545
2	Improvement of teaching methodology for primary school children - Adhyapika project	Valsad (Gujarat)	85,00,000	26,52,737
3	Support to Eklavya Model Residential School -Atul Vidyamandir	Pardi, Valsad (Gujarat)	15,00,000	6,70,492
4	Support to develop a school in a tribal area	Chondha, Navsari (Gujarat)	2,00,000	47,628
5	Provision of scholarships to needy and meritorious students	Valsad (Gujarat)	10,00,000	1,52,044
6	Provide assistance to lesser privileged children	Valsad (Gujarat)	11,00,000	6,98,352
7	Provision of education kits to children	Valsad (Gujarat)	8,00,000	7,43,660
8	Conservation of manuscripts	Ahmedabad (Gujarat)	50,00,000	-
9	Provide assistance to children with special needs	Bharuch (Gujarat)	1,00,000	30,000
10	Promote learning and life skills among children	Bangalore (Karnataka)	2,00,000	-
11	Contribution towards publication of books on Indian culture Ecology Philosophy	Jaipur (Rajasthan)	3,50,000	-
12	Support to develop a school in West Bengal	Murshidabad (West Bengal)	2,00,000	2,00,000
13	Skills training to youth as apprentices	Valsad (Gujarat)	1,10,00,000	72,28,747
14	Empowerment of women youth through various vocational training courses	Valsad (Gujarat)	30,00,000	17,17,601

15	Develop micro entrepreneurs to provide sustainable livelihood	Valsad (Gujarat)	15,00,000	3,02,051
16	Create livelihood opportunities for tribal families by providing cows	Valsad (Gujarat)	35,00,000	(#)
17	Empower women through self-help groups	Valsad (Gujarat)	20,00,000	11,55,194
18	Enhancement of rural health through health camps	Valsad (Gujarat)	25,00,000	8,07,978
19	Establish Atul Medical Diagnostic Centre	Atul, Valsad (Gujarat)	2,00,00,000	-
20	Promote health and well-being of adolescents and women	Valsad (Gujarat)	25,00,000	11,31,758
21	Provision of blood units to the needy and deserted patients	Bharuch (Gujarat)	2,40,000	(#S
22	Upgradation of sports infrastructure and equipment	Atul, Valsad (Gujarat)	60,00,000	1,76,000
23	Promote Fit@50+ Women's Trans Himalayan Expedition	India	5,00,000	5,00,000
24	Provision of medical treatment to needy patients	Valsad (Gujarat)	15,00,000	15,43,144
25	Valsad Flood Releif			4,66,798
26	Develop community infrastructure in Atul Village	Atul, Valsad (Gujarat)	2,10,00,000	9,54,591
27	Infrastructure development in Atul and surrounding villages	Valsad (Gujarat)	50,00,000	9,405
28	Construction of toilet blocks in Kalyani Shala	Valsad (Gujarat)	80,00,000	1
29	Develop Ulhas cricket ground	Valsad (Gujarat)	50,00,000	100 NO.
30	Construction of toilet blocks at Samdoli Shikshan Sansthan	Samdoli (Maharashtra)	12,50,000	2,00,000
31	Establishment of solid waste management system in Atul village	Atul, Valsad (Gujarat)	35,00,000	15,78,322

32	Initiate solid waste management project in five villages	Atul, Valsad (Gujarat)	40,00,000	-
33	Initiate natural resource management project	Atul, Valsad (Gujarat)	25,00,000	7,63,493
34	Conserve energy through solar system	Valsad (Gujarat)	50,00,000	1,38,706
35	Set up nature-based wastewater recycling systems	Valsad (Gujarat)	1,55,00,000	14,68,536
36	Conserve water through various interventions	Valsad (Gujarat)	20,00,000	-
37	Enhance green cover- Tree Plantation Project	Valsad (Gujarat)	20,00,000	13,12,364
38	Protection of animals	Valsad (Gujarat)	5,00,000	1,21,575
Total (CSR budget (a+b+c+d+e+f)		15,24,40,000	2,84,21,906
Administrative overheads (OH)			75,60,000	-
Total 1	for Atul Limited (CSR budget + OH)		16,00,00,000	2,84,21,906

For

P.O. ATUL-396 020, DIST: - VALSAD.

STUDY PERIOD:MAY -2021 TO JAN-2022

Prepared By:

Poll &con

Pollucon Laboratories Pvt. Ltd.

Piot No.5/6, "Poliucon House",
Opp. Balaji industrial Society, Old Shantinath Silk mill Lane,
Wear Gayatrilarsan Mart, Navjivan circle,
UdhanalAagdalla Road, Surat 3905007.
PHONO/FAM: [0261] 2455751, 2601224, 2601106
Web: www.poliuconlab.com E-mail: pollucon@gmail.com

"PRELIMINARY STUDY FOR GROUND WATER QUALITY & SOILQUALITY DURING PRE-MOONSON AND POST - MOONSON"

For

P.O. ATUL-396 020, DIST: - VALSAD.

STUDY PERIOD:MAY -2021 TO JAN-2022

For and on behalf of Pollucon Laboratories Pvt. Ltd., Surat

Approved by

Dr. Arun Kumar Bajpai

Signed

h.,

Designation

: Lab Manager (Q)

Year

This report is prepared by PolluconLaboratories Pvt. Ltd. with all reasonable skills, care and diligence, incorporating our General Terms and Conditions of Business and taking account of the resources devoted.

Poll Con

Pollucon Laboratories Pvt. Ltd., Surat.

www.polluconlab.com

ORATO

SURAT

2

peliminary Study for Ground Water Quality & Soil for M/s. Atul Limited May - 2021 To January - 2022 10. CONCLUSION Poll&con www.polluconlab.com 87 Pollucon Laboratories Pvt. Ltd., Surat.

Preliminary Study for Ground Water Quality & Soil for M/s. Atul Limited

May - 2021 To January - 2022

- All Analyzed Parameters are within the norms of PERMISSIBLE LIMIT IN THE ABSENCE OF ALTERNATE SOURCE as per of IS 10500:2012 for drinking water (for parameters which limits are specified).
- Soil samples are taken from different location of site and no acidic soil is found at any location.
- Texture of soil is sandy loam at each site.
- No contamination of ground water observed in pre and post monsoon sample analysis.

Atul Ltd

Project: Expansion of Chemicals Manufacturing Unit EC Compliance Report for EC F. No. J-11011/108/2015-IA-II (I), Dated February 11, 2019 Report Period: April 2022 - September 2022

Sr No.	Condition	Complian	Compliance			
Term	and Conditions:	I				
ii.	The treated effluent 3335 cum/day shall recycled/reused to me the requirement of difference.	be The treate	ed effluent recycled in	n system is Av	/g. 287 KL/Day di	
	industrial operations, a	ınd Sr	Month	Total Recycle	Avg. KL/Day	
	effluent of 20514 cum/c	day 1	April - 2022	7328	244	
	shall be discharge estuary of Par Riv	ver 2	May -2022	7768	251	
	through the existing pipeline.	ing 3	June - 2022	7753	258	
		4	July - 2022	10241	330	
	5	August - 2022	10744	347		
		discharge	September - 2022 g about Avg 9236 d to estuary of Par riv	KL/Day treate er through the	e existing pipeline of	
		Remainin discharge achieving prescribed	g about Avg 9236	KL/Day treated for through the sylich is well worn. Effluent Discharged to Estuary of Pa	ed effluent has be existing pipeline of within below limi	
		Remainin discharge achieving prescribed	g about Avg 9236 d to estuary of Par riv norms stipulated, v	KL/Day treated rer through the which is well won. Effluent Discharged to	ed effluent has be existing pipeline of within below limi	
		Remainin discharge achieving prescribed	g about Avg 9236 d to estuary of Par riv norms stipulated, v d in stipulated condition	KL/Day treated the treated which is well with the treated trea	Avg. KL/Day	
		Remainin discharge achieving prescribed	g about Avg 9236 d to estuary of Par riv norms stipulated, v d in stipulated condition Month April - 2022	KL/Day treated for through the vhich is well with the very series on the very series of t	Avg. KL/Day 9481	
		Remainin discharge achieving prescribed Sr No	g about Avg 9236 d to estuary of Par riv norms stipulated, v d in stipulated condition Month April - 2022 May -2022	KL/Day treated for through the which is well with the contract of the contract	Avg. KL/Day 9481 9541	
		Remainin discharge achieving prescribed Sr No 1 2 3	g about Avg 9236 d to estuary of Par riv norms stipulated, v d in stipulated condition Month April - 2022 May -2022 June - 2022	KL/Day treated for through the sylich is well with the sylich on. Effluent Discharged to Estuary of Parkiver 284435 295770 251593	Avg. KL/Day 9481 9541 8386	

II) M/s. Pollucon Laboratories Pvt.Ltd, Surat which also has NABL approval.

Apart from the above, we are continuously monitoring pH, TOC, flow, of treated effluent as per CPCB guidelines and also connected with GPCB and CPCB server.

The treated effluent is meeting all the state pollution control board's discharge norms and values of various parameters of treated effluent is given in **Annexure 1**.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

Sr No.	Parameter	Limit Mg/l	Values for the period April 2022 – September 2022			
			Min.	Max.	Avg.	
1	рН	5.5 to 9.0	7.3	7.9	7.5	
2	Temperature	40 °C	30.1	30.9	30.4	
3	Colour (pt. co. scale)in units		40.0	70.0	55.0	
4	Suspended solids	100	31.0	58.0	46.1	
5	Oil and Grease	10	2.9	5.2	4.1	
6	Phenolic Compounds	5	0.7	1.0	0.8	
7	Cyanides	0.2	ND	ND	ND	
8	Fluorides	2	0.7	1.1	0.8	
9	Sulphides	2	0.5	1.6	0.9	
10	Ammonical Nitrogen	50	7.2	14.8	9.8	
11	Arsenic	0.2	ND	ND	ND	
12	Total Chromium	2	0.1	0.1	0.1	
13	Hexavelent Chromium	1	ND	ND	ND	
14	Copper	3	0.3	0.2	0.1	
15	Lead	2	ND	ND	ND	
16	Mercury	0.01	ND	ND	ND	
17	Nickel	5	0.1	0.1	0.1	

	T	10	7'	1 -	0.4	0.4	0.2
		18	Zinc	15	0.1	0.4	0.3
		19	Cadmium	2	ND	ND	ND
		20	Phosphate	5	1.8	3.8	2.2
		21	BOD (3 days at 27°C)	100	42.0	58.0	49.5
		22	COD	250	208.0	244.0	224.1
		23	Insecticide/Pestici de	Absent	Absent	Absent	Absent
		24	Sodium Absorption Ratio	26	6.1	24.4	11.2
		25	Manganese	2	0.1	0.9	0.2
		26	Tin	0.1	ND	ND	ND
		27	Bio Assay Test	90% survival of fish after 96 hrs. in 100% effluent %	100% survival of fish after 96 hrs. in 100% effluent	100% surviva I of fish after 96 hrs. in 100% effluent	100% survival of fish after 96 hrs. in 100% effluent
iii	Necessary authorization required under the Hazardous and other Wastes Management Rule, 2016 shall be obtain and the Provisions contained in the Rules shall be strictly adhered to.	Complied. We have obtained necessary authorization for Hazardous and other waste by obtaining Amendment in Existing CTO after receiving EC. CTO amendment has been granted by GPCB Vide Letter No. GPCB/CCA-VSD-31316)/ID: 23158/513897, Dated July 17, 2019 (CTO amendment No. AH 102080), Valid Till-November 03, 2019.				ter No. 17, 2019 03, 2019.	

iv National Emission
Standards for organic
chemicals Manufacturing
Industry issued by the
Ministry vide G.S.R. 608(E)
Dated 21 July, 2010 and
Amended from time to time
shall be followed.

Noted & Complied.

We have been following the National Emission Standards since beginning. The location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the up wind and downwind direction as well as where maximum ground level concentration are anticipated. This also covers the impact, if any, of the project plant. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory. In total we had selected 10 locations, and monitored successfully. Results are attached herewith.

The Ambient Air Quality is being monitored at regular interval for ensuring the compliance by NABL approved reputed agency.

The analysis reports were within the permissible limits. A detail of analysis report of monitoring report is attached in **Annexure 2**

The maximum values during the compliance period confirm that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Summary of Ambient Air Quality results:

Station	Parameter	Limit	Values for the period			
		micro -	April 2022 – September 2022			
		gm/NM³	Min.	Max.	Avg.	
66 KV	PM2.5	60	29.0	34.0	31.8	
	PM10	100	45.0	54.0	50.2	
	SO ₂	80	13.7	22.6	18.3	
	NO_2	80	24.7	27.9	26.1	
	Ammonia	400	ND	ND	ND	
	HCI	200	4.1	6.5	5.3	
Opposite	PM2.5	60	10.3	32.8	22.2	
Shed D	PM10	100	15.2	54.8	39.0	
	SO ₂	80	10.1	19.8	14.7	
	NO ₂	80	12.7	25.6	18.2	
	Ammonia	400	ND	ND	ND	
	HCI	200	ND	ND	ND	
West site	PM2.5	60	26.0	36.0	31.5	
ETP	PM10	100	39.0	59.0	51.8	
	SO ₂	80	11.6	23.7	19.9	
	NO ₂	80	24.9	27.1	26.2	
	Ammonia	400	ND	ND	ND	
	HCI	200	ND	ND	ND	
North site	PM2.5	60	28.0	34.0	30.8	
ETP	PM10	100	42.0	58.0	51.7	
	SO ₂	80	15.3	20.6	18.0	
	NO ₂	80	17.3	31.2	26.1	

		Ammonia	400	3.4	4.6	4.1
		HCI	200	ND	ND	ND
	TSDF	PM2.5	60	27.0	35.0	31.3
		PM10	100	38.0	54.0	49.3
		SO ₂	80	12.0	18.5	16.1
		NO ₂	80	22.8	28.4	26.0
		Ammonia	400	2.6	3.9	3.2
		HCI	200	ND	ND	ND
	Main Guest	PM2.5	60	14.6	34.8	23.4
	House	PM10	100	37.6	54.8	45.2
	5450	SO ₂	80	9.8	20.4	15.1
		NO_2	80	12.4	29.3	18.4
		Ammonia	400	ND	ND	ND
		HCI	200	ND	ND	ND
	Wyeth	PM2.5	60	25.0	32.0	29.3
	Colony	PM10	100	36.0	57.0	49.3
	Colorly	SO ₂	80	14.1	20.7	18.1
		NO ₂	80	24.1	30.4	27.7
		Ammonia	400	ND	ND	ND
		HCI	200	ND	ND	ND
	Gram	PM2.5	60	14.3	34.6	24.1
	panchayat	PM10	100	31.9	52.6	41.6
	hall	SO ₂	80	7.6	21.9	13.1
		NO ₂	80	11.7	25.9	19.1
		Ammonia	400	ND	ND	ND
		HCI	200	ND	ND	ND
	Main office,	PM2.5	60	11.4	35.6	22.9
	North site	PM10	100	37.9	52.0	45.1
		SO ₂	80	8.9	21.3	14.0
		NO ₂	80	11.3	25.2	18.7
		Ammonia	400	ND	ND	ND
		HCI	200	ND	ND	ND
	Haria water	PM2.5	60	12.5	31.5	21.7
	tank	PM10	100	37.3	55.3	45.5
		SO ₂	80	10.6	19.7	14.3
		NO ₂	80	11.8	25.3	18.7
		Ammonia	400	ND	ND	ND
		HCI	200	ND	ND	ND

v To control source and the fugitive emissions, suitable pollution control devices shall be installed to meet the prescribed norms and/ or the NAAOS.

The gaseous emissions shall be dispersed through stack of adequate height as per CPCB/SPCB Guidelines.

Complied.

For controlling source & fugitive emissions in the work zone environment and raw material storage area is being regularly monitored by NABL approved third party. Numbers of gas detectors are provided in work area for close monitoring. We have installed various APCM, special hood, suction pipe for gases emission, appropriate scrubbers and has stack height as per stipulated condition & CPCB guidelines. Elephant trunk with flexible hoods are also provided at potential leak points, sampling points, man holes, charging points and connected with scrubbers.

We are also monitoring VOC as well as other chemicals in work area as per Factories Act and records are being maintained in Form No. 37.

Solvents are stored in tank farms in separate tanks with proper earthing, flame arresters, lightening arresters, fencing, fire hydrant system, fire extinguishers, flame proof equipment, etc. safety measures. Dedicated scrubbers with stacks of appropriate height (as per the central pollution control board guideline) have been provided to control the emission from various vents. Central exhaust system has been provided at strategic locations and the critical operations evolving the hazardous gases are routed through multiple stages scrubbing system.

The maximum values during the compliance period confirm that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below, detailed analysis report are attached as **Annexure 3**.

The flue & process stack is being monitored at regular interval for ensuring the compliance by NABL approved reputed agency. Detailed analysis report are attached as **Annexure 4**.

vi Solvent management shall be carried out as follows:

(a) Reactor shall be connected to chilled brine condenser system.

Complied.

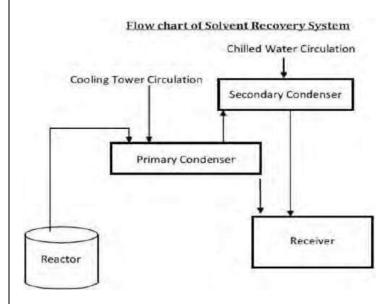
Condensers with chilling systems are provided at point of Solvent recovery to minimized vapour loss as shown below:-

Condenser at Solvent recovery

(b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages.

Complied.

We have provided seals at all Reactors and pump's in order to prevent leakage as shown below:-


Seal at Stirrer

Pump Seal

(c) The condensers shall be Provided with sufficient HTA and residence time so as to achieve More than 95% recovery.

Complied.

Spent solvents are recovered as far as possible as per details given below and all venting equipment are provided with condenser system & scrubber provided with Sufficient Heat Transfer Area (HTA) which helps to achieved more than 95% recovery.

VOC Trap Condenser -02: Chilled water at -15 $^{\circ}$ C is be used to trap any traces of Solvent which is slipped from Secondary condenser.

MEASURES:

To prevent losses of solvents in atmosphere, following infrastructure shall be used:

- Leak Free Pumps for transfer of solvents.
- MSW Gaskets in solvent pipelines to prevent leakage from flanges.
- Minimum number of flanges, joints and valves in pipelines.
- To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
- All the rotating equipment like pumps will be installed with Mechanical Seals to arrest any sort of emissions.

(d) Solvents shall be stored in a separate space specified with all safety measures.

Complied.

We have made separate provision for solvent storage & is installed as per PESO regulation wherever applicable with all details of Storage area, operating temperature and pressure, types of possible hazards and control measures.

Tank Farm

Details For Solvent Storage is as per Annexure 5.

(e) Proper earthling shall be provided in all the electrical equipment wherever solvent handling is done.

Complied.

Earthing pit is provided in all electrical equipment wherever solvent handling is done as below:-

(f) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses.

Complied.

Entire plant is flame proof installations, storage tanks are provided with breather valve for all prevention of losses. Separate provision is made for solvent storage & is installed as per PESO regulation wherever applicable with all details of Storage area, operating temperature and pressure, types of possible hazards and control measures.

Details for solvent storage is given in above point vi (d).

(g) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.

Complied.

All the solvent storage tanks are being connected with condensers & chilled water circulation, Spent solvents are recovered as far as possible and all venting equipment are provided with condenser system & scrubber.

Details for VOC mitigation is given in above point vi ©. fire

vii Total fresh water requirement shall not exceed 21950 cum/day, proposed to be met from Par River. Prior permission in this regards shall be obtained from the concerned regulatory authority.

Complied.

The average water consumption for the report period is Avg. **10090 KL/day** only, which is well within the limit. Detail break up is given in below table:

Sr No.	Month	Quantity (KL/Month)	Avg. Quantity(KL/Day)
1	April - 2022	312080	10403
2	May -2022	327483	10564
3	June - 2022	273471	9116
4	July - 2022	307531	9920
5	August - 2022	314729	10153
6	September - 2022	311515	10384

The maximum values during the compliance period confirm that at no time the wastewater generation went beyond the stipulated value.

Fresh water requirement is met through the existing water supply system from river Par.

viii

Industrial/trade effluent shall be segregated into High COD/TDS and Low COD/TDS effluent streams. High TDS/COD shall be passed through stripper followed by MEE and ATFD. Low TDS effluent stream shall Be treated in ETP/RO to meet the prescribed standards.

Complied.

Industrial/trade effluent is being segregated as shown below into High TDS|COD & Low TDS|COD. High COD|TDS stream is subjected to MEE and ATFD. Low TDS|COD stream is treated in inhouse effluent treatment plant and discharged as per stipulated norms. It's not exceeding then prescribed limit of EC & CCA. The average wastewater generation for the report period is as under:

		Break up of effluent KI/Day		
Sr No.	Month	High TDS COD	Low TDS COD	Total Effluent generation
1	April - 2022	118	9363	9481
2	May -2022	117	9424	9541
3	June - 2022	102	8284	8386
4	July - 2022	140	8973	9113
5	August - 2022	130	9210	9340
6	September - 2022	126	9427	9553

The maximum values during the compliance period confirm that at no time the wastewater generation went beyond the stipulated

		value.
		Prescribed Standards: The final discharged treated waste water quality is also monitored by NABL approved laboratory at regular interval for ensuring the compliance. The testing Lab appointed is GPCB approved (schedule-II) M/s. Pollucon Laboratories Pvt.Ltd, Surat which also has NABL approval. Apart from the above, we are continuously monitoring pH, TOC, flow, of treated effluent as per CPCB guidelines and also connected with GPCB and CPCB server.
		Details for monitoring results is given in condition ii .
ix	Process effluent/any wastewater shall not be allowed to mix with storm water. The storm water from the premises shall be collected and discharged through a separate conveyance system.	Complied. Process effluent/any wastewater are being discharged to estuary of Par river through the existing pipeline and are not mixed with storm water line. We have already three numbers of check dams in natural storm water drains to collect and harvest rain water in monsoon season after giving necessary pre-treatment to remove suspended matter as we have pumped the rain water to clarifloculator units to remove suspended matter. We have facility capacity to cater our consumption with rain harvested water with zero river drawls of water from river during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water. We also construct temporary sand bag dam on top of dam towards the end of monsoon to store additional free flowing rain water in river Par. In addition to above, surface runoff water and roof top water is used to recharge bore wells. Total No. of Pond: 2 Nos. Capacity of Pond: (1 Nos. x 12000 KL) & (1 Nos. x 2000 KL) Company has harvest 468355 KL rain water during 2022
х	Hazardous chemicals shall be stored in tanks, tank farms, drums, carboys etc. Flame arresters shall be provided on tank farm, and solvent transfer through pumps.	Complied. Storage details of Hazardous materials along with control measure are as per Annexure 6.
xi	Process organic residue and spent carbon, if any, shall be Sent to cement industries. ETP sludge, process inorganic & evaporation salt	Complied. We have obtained necessary authorization for Hazardous and other waste by obtaining amendment in existing CTO after receiving EC and waste is disposed off accordingly.

shall be disposed off to the CTO amendment has been granted by GPCB Vide Letter No. TSDF. GPCB/CCA-VSD- 313(16)/ID: 23158/513897, Dated July 17, .2019 (CTO amendment No. AH 102080), Valid Till-November 03, 2019. Renewal for the same has been received with consent order no. 105110 valid up to September 30, 2025. Copy of CTE and CTO was submitted to Ministry vide our letter Atul/SHE/EC Compliance/01 dated December 19, 2019. χij The Company shall strictly Complied. comply with the rules and We are complying all the rules and regulation led by MSIHC, 1989. We are complying with Hazardous and Other Wastes quidelines under (Managements and transboundary Movement) Rules, 2016 Manufacture, Storage and of Hazardous towards ETP sludge, used Oil & empty drums- handling, and **Import** Chemicals (MSIHC) Rules, storage & disposal to authorized facility/TSDF. We have obtained necessary authorization for Hazardous and other waste by 1989 as amended time to obtaining amendment in existing CTO after receiving EC. CTO time. amendment has been granted by GPCB vide letter No. GPCB/CCA-ΑII transportation VSD-313(16)/ID: 23158/513897, dated July 17, 2019, further Hazardous Chemicals shall be as per the Motor Vehicle renewed vide consent order no. AWH 105110 valid up to Act. 1989. September 30, 2025. Fly ash should be stored Χiii Complied. separately as per CPCB We have not constructed ash pond for the CPP unit. We have guidelines so that it should closed three silo of 200 MT and Two silo of 300 MT capacity of not adversely affect the air each, total 1200 MT capacity, which is well enough for our average quality, becoming air borne generation of approx. 49 TPD. We dispatch the fly ash daily from by wind or water regime these silos so we have not prepare ash pond. during rainy season by flowing along with the storm water. Direct exposure of workers to fly ash & dust should be avoided. xiv The company shall undertake waste minimization measures as below:-(a) Metering and control of Complied. *quantities* of active Metering of water is done. Meter is provided at the inlet of the ingredients to minimize collection tank and reuse system of waste water and records are waste. being maintained. Photograph of water meter shown below:

	(b) Reuse of by- products from the process as raw materials or as raw material substitutes in other processes.	Sodium Sulfate, sodium thio sulphate, brine, MEE salt, sodium hypochlorite, copper hydroxide, spent acid, etc. are few byproducts from the process which are being sold for using the same either as raw material or as substitute to raw materials. Also, fly ash and gypsum are being used as raw material for brick manufacturing. Sodium hypochlorite, sodium hydro sulfide, etc. are being used as raw material in other processes.		
	(c) Use of automated filling to minimize spillage.	Filling/transfer system is being provided t i.e. Chain conveyor system provided.	o minimized the spillage	
	(d) Use of Close Feed system into batch reactors.	"Close feed system" is available to our pla	int	
	(e) Venting equipment through vapour recovery system.	At all venting equipment condenser recovery system & scrubbers are provided.		
	(f) Use of high pressure hoses for equipment clearing to reduce waste water generation.	We are using high pressure jet nozzle for minimize wastewater generation.	or equipment cleaning to	
xv	The green beltof at least 5-10 m width shall be developed in nearly 33% of the total project area, mainly along the plant periphery, in downward wind direction, and along roadsides etc. Selection of plant species shall be as per the CPCB	Complied. Complied. Company has already developed more the Atul complex Total Industrial Plot area: 1126078.27 sq. Green belt area: 409030.00 sq.mt (approx We planted approximately 39850 trees or report period at different location given in	mt k. 36% of total plot area) f difference species in	
	guidelines in consultation	Location	Nos. of trees	
	with the State Forest Department.	Near river bank Ghat	21350	
	Верагинена.	Parnera Hill	7300	
		Hill side colony 5 & Outside area	2000	
		Secure landfill site Yard	9200	

				Photograp	h of Plantation		
xvi	All the commitments made regarding issues raised during the public hearing/ consultation meeting shall be satisfactorily	Complied. Please refer below full compliance with this condition as under; 1. Local employment is going on and is above 80 % at present. 2. Coal handling guidelines are fully complied.					
xvii	implemented. As committed, funds allocation for the Corporate Environment Responsibility (CER) shall be 2% of the total project cost. Item- wise details along with time bound action plan shall be prepared and submitted to the Ministry's Regional Office.	Complied Details of		R is given in	Annexure 7.		
xviii	For the DG sets, emission limits and the stack height shall be in conformity with the extant regulations and the CPCB guidelines. Acoustic enclosure shall be provided to DG set for controlling the noise pollution.	We ensured that at no time the emission level go beyond the stipulated standards prescribed limits. In such cases occurrences we will intimate to board & authority time to time. Adequate stack height and acoustic enclosures are provided on DG sets. Stack details:				currences	
		No. Detail 1 DG Se 1010 (Stan	et H: 10		Limits 150 mg/Nm3 100 ppm 50 ppm	Adequate Stack Ht & Acoustic Enclosure	Diesel
		2 DG Se 1500 (Stan	<va< th=""><th>PM SO2 NOx</th><th>150 mg/Nm3 100 ppm 50 ppm</th><th></th><th>Diesel</th></va<>	PM SO2 NOx	150 mg/Nm3 100 ppm 50 ppm		Diesel

However, DG sets are being used only during emergency.

xix The unit shall make the arrangement for Protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms.

Complied.

A well designed Fire hydrant system is adequate and as per standards.

Fire hydrant Network details:

- Four full-fledged fire hydrant system in the company Water Storage Capacity - 50 million Liters
- Total length of hydrant line 15 km
- Fire Fighting Equipment
 - o DCP1350 o CO2 776 Foam : 05Trolly
- Fire Tenders
 - o One fire tender having 1800 Lit water capacity
 - Second multipurpose fire tenders having 5000 Lit water &500Foam
 - Third Multipurpose tender having facility of DCP- 500 Kg, Foam – 500 lit and Water – 4500Lit.
- SCBA sets 35nos.
- Emergency alarm system 532 nos. points spread across the company.
- Fire station manned round the clock with Siren and Annunciation System.
- Regular Testing on every Monday.
- Smoke detectors in the office and labs.
- Auto water deluging system at critical reactors.
- Auto water sprinkler system at tank farms.

xx Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.

Complied.

Being done on regular basis as per the Factories Act & rules.

Occupational health surveillance of the workers is carried out on a regular basis as per section-41 C of the factories act and ruke-68T of Gujarat Factories Rules and records are maintained. Regular medical check-up of all employees are done by in-house doctors.

The following medical check-up has been carried out during report period:

Medical Check-Up:

Sr No.	Employee	Nos. during report period
1	Staff	
2	Operators	1175
3	Workers	

Various types of tests being performed are as below;

- 1. Pre-employment check-up:
- 1. Vision
- 2. Colour blindness
- 3. CBC
- 4. Urine

- 5. Height
- 6. Weight
- 7. B/P
- 8. Pulse
- 9. Habit
- 10. Personal History
- 11. Family History
- 12. Identification k
- 2. Annual Check-up:
- 1. Physical check-up
- 2. Vision
- 3. Blood
- 4. Urine
- 5. PFT
- 6. ECG

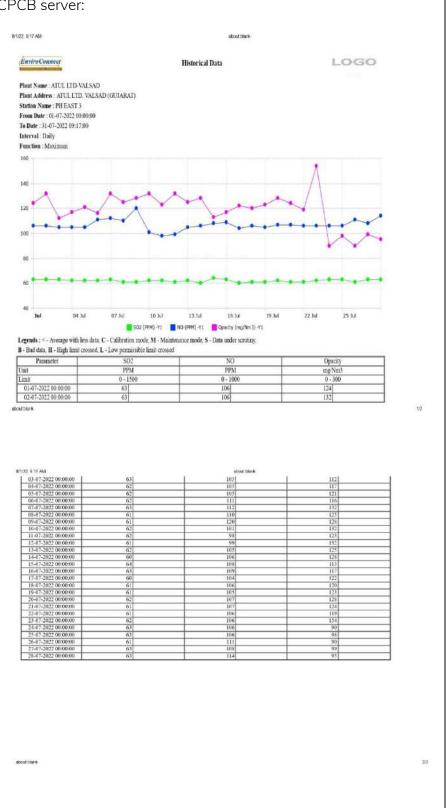
Our occupational health centre & Pathology Lab is equipped with necessary facilities under supervision of factory medical officer with trained three EHS persons.

Medical Facilities:

- ☐ First Aid boxes in all plants
- □ Central Ambulance Room in the middle of the factory
- ☐ Two Ambulance Vans. Out of which one is equipped with ICU facilities.
- Medical Center
- □ Three full time AFIH certified doctors.
- □ Equipped with 3Beds
- □ Full equipped Pathological lab with advanced diagnostic equipment
- ECG Equipment
- Cardiac monitor
- Defibrillator
- □ Finger pulse Oxy meter
- Pulmonary Function Test Apparatus
- 02Administration
- Antidotes with routine Important and Vital lifesaving Drugs
- □ Tie-up with Kasturba Hospital, Valsad, and Pardi Hospital, Pardi, respectively 7 kms and 3 kms away from Atul.

We also

have tie up with external two hospitals (Pardi Hospital and Kasturba Hospital). We have medical check-up schedule once in


	quarter for Insecticide plant's employees Other necessary items including First-aid medicines, antidotes and equipment as prescribed in the schedule the under Rule-68 U (b) of the Gujarat factories rules are also been provided.
--	---

хi Continuous online (24x7)monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel /drain carrying effluent within the premises.

Complied.

Online monitoring system for SPM, SOx and NOx is already been made and connected to CPCB server.

Photograph of online monitoring system (CEMS) connected to the CPCB server:

R Ge	eneral Conditions:	
i	The project authorities shall adhere to the stipulations made by the State Pollution Control Board, Central Pollution Control Board, State Government and any other statutory authority.	The company complies with all stipulations prescribed by the State Pollution Control Board, Central Pollution Control Board, State Government and any other statutory authority. Our compliance are further monitored by our Environmental auditors appointed by GPCB. Latest Environmental audit report by Shree Tapi Bhramcharyashram Sabha College, for year 2021-22 was submitted vide our letter dated June 28, 2022.
ii	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forest and Climate Change. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	Complied. We ensure that there is no further expansion or modifications related to EC in the plant. For any deviations or alteration in the plant we will opt prior permission from MoEF.
iii	The locations of ambient air quality monitoring stations shall be decided in Consultation with the State Pollution Control Board (SPCB) and it shall be ensured that at least one station each is installed in the upwind and downwind direction as well as where maximum ground level concentrations are anticipated.	Complied. The Location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the up wind and downwind direction as well as where maximum ground level concentration are anticipated. This also covers the impact, if any, of the project plant. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory. The maximum values during the compliance period confirm that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given above in Specific Condition IV.
iv	The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16 November, 2009 shall be followed.	
V	The overall noise levels in and around the plant area shall be kept well within the standards by providing noise	Complied.

control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act, 1986 Rules,1989 viz. 75 dBA (day time) and 70 dBA (night time).

The ambient and workplace noise level confirms to the standard prescribed under EPA. The same is being regularly monitored at regular interval for ensuring the compliance.

The maximum values during the compliance period confirm that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Noise level monitoring data (Day Time)

Sr No.	Location	Permissible Values for the period Limits, April 2022 – September 20						
		dB	Min.	Max.	Avg.			
1	66KVA substation	75	62.7	67.9	65.6			
2	Opposite shed D	75	62.8	69.4	66.1			
3	ETP West site	75	64.7	70.2	67.2			
4	ETP North site	75	64.3	69.2	67.3			
5	Near TSDF	75	54.3	59.2	57.2			
6	Near Main guest house	75	60.3	68.6	65.5			
7	At Wyeth Colony	75	56.8	62.5	59.7			
8	Gram Panchayat Hall	75	61.5	69.5	64.3			
9	Near Main Office North site	75	55.9	60.0	58.1			
10	Haria Water tank	75	64.0	67.4	65.9			

Noise level monitoring data (Night Time):

Sr	Location	Permissibl e Limits,	Values for the period April 2022 – September 2022			
No.		dB	Min.	Max.	Avg.	
1	66KVA substation	70	50.7	54.0	52.4	
2	Opposite shed D	70	52.7	55.1	53.8	
3	ETP West site	70	51.2	55.3	53.4	
4	ETP North site	70	53.2	60.7	56.2	
5	Near TSDF	70	45.8	51.9	49.9	
6	Near Main guest house	70	50.1	56.5	53.2	
7	At Wyeth Colony	70	48.9	55.9	52.6	
8	Gram Panchayat Hall	70	49.8	53.8	52.1	
9	Near Main Office North site	70	49.5	56.7	53.2	

		10 Haria Water tank 70 50.7 53.4 52.2
vi	The company shall harvest rainwater from the roof tops of the Buildings and Storm water Drains to Recharge the ground water and to utilize the same for process requirements.	Complied. Rooftop rain water from Coal sheds and New TG building is collected in well-constructed pond and used as make up water for cooling tower. We have already three numbers of check dams in natural storm water drains to collect and harvest rain water in monsoon season after giving necessary pre-treatment to remove suspended matter as we have pumped these rain water to clarifloculator units to remove suspended matter. We are creating facility/ capacity to cater our consumption with rain harvested water with zero river drawls of water during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water. We also construct temporary sand bag dam on top of dam towards the end of monsoon to store additional free
		flowing rain water in river Par. In addition to above, surface runoff water and roof top water is used to recharge bore wells. Total No. of Pond: 2 Nos. Capacity of Pond:(1 Nos. x 12000 KL) & (1 Nos. x 2000 KL) Company has harvest 468355 KL rain water during Photograph of rain water harvesting structure (Pond) as shown below:
		Water Harvesting Project at Colony Water Harvesting Project near Coconut Circle

vii Training shall be imparted to all employees on safety and health aspects of chemicals handling. Pre- employment and routine periodical medical examinations for all employees shall be undertaken on regular basis. Training to all employees on Handling of chemicals shall be imparted.

Complied.

Company is providing training which cover all relevant workplace policies, procedures and practices to ensure that staff have the appropriate skills and knowledge to perform their work safety and according to the legislative requirements and the departments and work place procedures.

All employees and others have a duty to comply with instructions given for workplace health and safety.

Employee training which generally include:

- First aid training
- Firefighting training Use of Fire Hydrant/Extinguisher
- Handling of Compressed Gas Cylinder
- Work Permit System, Use of Spill Kit
- Handling of Solvents
- Operation of ETP &MEE
- Handling of Hazardous waste
- Handling of Biomedical waste
- Scrap yard management
- 111 A training as per factory Act
- General instruction training; e.g. workplace communication processes, incident reporting, lock down, evacuation and medical emergency procedures, mock drill.
- Job-specific training e.g. safe work procedures for the use of equipment, SOP of manufacturing process & safety and health aspect of chemical handling.
- Conducted OSHAS & EMS Programme.
- Hygiene, Stress management & skill development.

We have regularly arrange safety training programme for our employees in every month.

EHS Monthly training calendar

Photograph of safety training

viii	The company shall also comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.	safeguards proposed in the project report submitted to ministry is compiled as mention in Annexure 9
ix	The company shall undertake all the relevant measures for improving the socio economic conditions of	l '

the surrounding area. CER activities shall be undertaken by involving local villages

and administration.

X	The company shall undertake eco- developmental measures including community welfare measures in the project area for the Overall improvement of the environment.	Complied. Details of CER CSR is given general condition (ix)
xi	A separate Environmental Management Cell equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental management and monitoring functions.	Company is having separate Environmental Management Cell equipped with full-fledged laboratory facility to carry out the environment management and monitoring functions. Apart from this, one Environment Research Lab is also established for research work for the study of various aspects related to environment and its remedial measures. Company has developed a separate laboratory equipped with equipment such as pH meter, TDS meter, COD meter, Glass ware, gas chromatography system, and oven, muffle furnace, etc. to carry out testing of routine parameters. Currently the parameters measured in-house are pH, COD, TDS, MLVSS, and MLSS.A For all external environmental monitoring we have appointed NABL approved reputed agencies.

χij The company shall mark sufficient funds towards capital cost and recurring cost per annum to implement the conditions stipulated by the Ministry of Environment, Forest and Climate Change as well as the State Government along with the implementation schedule all the conditions stipulated herein. The funds so earmarked for environment management/ pollution control measures shall not be diverted for any other purpose.

Complied.

EMP measures are implemented.

Recurring cost: A separate budget is being allocated every year to comply with all the legal requirement stipulated by SPCB, CPCB & MoEF apart from upkeep of pollution control systems and facilities. Total expenditure for the report period is given in below table.

Sr No	. Parameter	Recurring Cost (Rs. In lacs) For the report period April 2021- September 2022
1	Air Pollution Control	-2460
2	Liquid Pollution Control	2460
	Environmental	
3	Monitoring and	19
	Management	
4	Solid waste Disposal	126
5	Occupational health	15
6	Green belt	15
Toto	l	2635

xiii A copy of the clearance letter shall be sent by the project proponent concerned Panchayat Zilla Parishad/Municipal corporation, Urban local Body and the local NGO, if from whom any, suggestions/ representations, any, while were received processing the proposal.

Complied.

We have informed the public that the project has been accorded environmental clearance by the EAC, MoEF&CC Delhi and that the copies of the clearance letter are available with the GPCB and also be seen at website of EAC/GPCB.

xiv The Complied. project proponent shall also submit six monthly We regularly submit the half-yearly compliance report & same is reports on the status of being updated on website. Six monthly compliance report and the monitored data are compliance of the stipulated Environmental Clearance regularly submitted to the Regional office of MoEF&CC conditions including results integrated regional office, Gandhinagar through mail and hard of monitored data (both in copy with copy marked to GPCB regularly. hard copies as well as by e- mail) to the respective Regional Office of MoEF&CC. the respective Zonal Office of CPCB and SPCB. A copy of EC and six monthly compliance status report shall be posted on the website of the company. ΧV environmental Complied. statement for each financial The Env. Statement (Form-V) for each financial year ending 31st vear ending 31st ch in Form-March is being submitted to State Pollution Control Board (GPCB) every year time to time on XGN portal as well as hard copy V as is mandated shall be submitted to the concerned submission. Form V for year 2021-22is attached as Annexure 8 State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended. Subsequently, shall also be put on the website of the company along with the status of compliance environmental clearance and shall also conditions be sent to the respective

Regional

MoEF&CC by e- mail.

Offices

xvi	The project proponent shall inform the public that	Complied. We have been granted EC Dated: February 11, 2019 and inform
	the project has been	the public that the project has been accorded environmental
	accorded environmental	clearance and advertised in local newspapers that are widely
	clearance by the Ministry and copies of the clearance	circulated in the region with vernacular language Gujarati and another in English on February 17, 2019. Details submitted vide
	letter are available with the	our letter Atul/SHE/EC Compliance/01 dated December 19, 2019.
	SPCB/Committee and may	our letter / (tal/or let/20 compilarited/or dated December 10, 2010.
	also be seen at Website of	
	the Ministry at	
	http://moef.nic.in	
	This shall be advertised	
	within seven days from the	
	date of issue of the clearance	
	letter, at least in two local newspapers that are widely	
	circulated in the region of	
	which one shall be in the	
	vernacular language of the	
	locality concerned and a	
	copy of the same shall be	
	forwarded to the concerned	
	Regional Office of the	
	Ministry.	
xvii	The project authorities shall	Complied.
	inform the Regional Office as	We have communicated with the regional officer & MoEF&CC
	well as the Ministry, the Date	towards the status of work and financial closure time to time. We
	of financial closure and final	have also submitted six monthly EC compliance report periodically
	approval of the project by the concerned authorities and	in which said information were updated time to time.
	the date of start of the	
	project.	

Annexure 1: Quality of Treated Effluent

Sr No.	Parameter	Results	GPCB					
INO.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Limits Mg/l
1	рН	7.2	7.2	7.9	7.8	7.7	7.3	5.5 to 9.0
2	Temperature	30.3	30.3	30.1	30.3	30.9	30.5	40 °C
3	Colour (pt. co. scale)in units	50.0	40.0	60.0	50.0	60.0	70.0	
4	Suspended solids	58.0	31.0	47.0	37.0	48.0	56.0	100
5	Oil and Grease	4.6	3.8	2.9	3.9	5.2	4.4	10
6	Phenolic Compounds	0.9	1.0	0.8	0.7	0.9	0.7	5
7	Cyanides	ND	ND	ND	ND	ND	ND	0.2
8	Fluorides	0.6	0.9	1.1	0.9	0.8	0.7	2
9	Sulphides	0.5	0.8	0.7	0.8	1.2	1.6	2
10	Ammonical Nitrogen	7.1	14.8	8.1	11.3	9.6	7.9	50
11	Arsenic	ND	ND	ND	ND	ND	ND	0.2
12	Total Chromium	ND	ND	0.1	0.9	0.9	0.1	2
13	Hexavelent Chromium	ND	ND	ND	ND	ND	ND	1
14	Copper	0.1	0.3	0.1	0.2	0.2	0.1	3
15	Lead	ND	ND	ND	ND	ND	ND	2
16	Mercury	ND	ND	ND	ND	ND	ND	0.01
17	Nickel	ND	ND	0.1	0.1	0.1	0.1	5
18	Zinc	0.4	0.6	0.2	0.3	0.2	0.3	15
19	Cadmium	ND	ND	ND	ND	ND	ND	2
20	Phosphate	1.8	3.8	2.1	1.8	2.1	1.9	5
21	BOD (3 days at 27°C)	43.0	48.0	42.0	54.0	58.0	52.0	100
22	COD	216.0	236.0	208.0	231.0	244.0	210.0	250
23	Insecticide/Pesticide	Absent	Absent	Absent	Absent	Absent	Absent	Absent
24	Sodium Absorption Ratio	6.1	24.4	13.5	7.0	8.6	8.0	26
25	Manganese	0.1	0.9	0.1	0.1	0.1	0.1	2
26	Tin	ND	ND	ND	ND	ND	ND	0.1
27	Bio Assay Test	100% survival of fish after 96 hrs. in 100% effluent	100% survival of fish after 96 hrs. in 100% effluent	90% survival of fish after 96 hrs. in 100% effluent %				
	Note: ND is Not [•	•	•	•	•

Annexure 2: Ambient Air Quality Monitoring Results

Station	Parameter	Limit micro gm/NM³	April 2022	May 2022	June 2022	July 2022	August 2022	September 2022
66 KV	PM 2.5	60	32.0	34.0	32.0	33.0	31.0	29.0
	PM10	100	45.0	53.0	51.0	53.0	45.0	54.0
	SO2	80	13.7	16.8	21.6	17.9	22.6	16.9
	NO ₂	80	26.3	24.9	27.3	25.4	24.7	27.9
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	6.5	5.9	4.8	4.1	ND	ND
Opposite	PM 2.5	60	30.0	32.8	30.1	10.3	13.0	16.7
Shed D	PM10	100	41.0	54.8	46.7	34.5	41.8	15.2
	SO2	80	14.5	17.2	13.3	10.1	19.8	13.1
	NO ₂	80	21.0	25.6	17.8	14.6	12.7	17.3
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
West site ETP	PM 2.5	60	29.0	32.0	36.0	34.0	32.0	26.0
	PM10	100	39.0	55.0	56.0	52.0	59.0	50.0
	SO2	80	11.6	22.9	20.7	22.4	23.7	18.0
	NO ₂	80	25.9	27.1	26.1	24.9	26.3	26.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
North ETP	PM 2.5	60	28.0	30.0	34.0	30.0	33.0	30.0
	PM10	100	42.0	54.0	50.0	55.0	58.0	51.0
	SO2	80	15.3	20.6	18.4	16.8	19.4	17.4
	NO ₂	80	17.3	25.1	28.4	26.3	31.2	28.1
	Ammonia	400	4.6	4.3	4.1	3.4	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
TSDF	PM 2.5	60	31.0	35.0	31.0	35.0	29.0	27.0
	PM10	100	38.0	51.0	54.0	51.0	49.0	53.0
	SO2	80	12.0	18.5	16.9	14.3	16.9	18.2
	NO ₂	80	22.8	26.3	24.3	28.4	27.9	26.5
	Ammonia	400	3.1	2.6	3.2	3.9	ND	ND

	HCI	200	ND	ND	ND	ND	ND	ND
Main Guest	PM 2.5	60	37.6	53.6	54.8	39.2	40.2	45.5
House	PM10	100	15.6	20.4	13.8	9.8	15.6	15.1
	S02	80	17.0	29.3	20.1	14.0	12.4	17.8
	NO ₂	80	ND	ND	ND	ND	ND	ND
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	25.0	31.0	32.0	29.0	28.0	31.0
Wyeth Colony	PM 2.5	60	36.0	52.0	53.0	50.0	57.0	48.0
	PM10	100	14.1	20.7	19.2	18.5	19.4	16.4
	SO2	80	24.1	29.5	25.0	26.7	30.2	30.4
	NO ₂	80	ND	ND	ND	ND	ND	ND
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	37.6	53.6	54.8	39.2	40.2	45.5
Gram	PM 2.5	60	31.6	34.6	30.5	14.3	18.4	15.3
panchayat hall	PM10	100	41.7	52.6	50.7	38.4	34.1	31.9
	SO2	80	13.6	21.9	10.7	7.6	7.6	17.4
	NO ₂	80	23.7	25.9	20.4	14.7	11.7	18.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Main office,	PM 2.5	60	30.6	35.6	26.4	11.4	15.3	18.0
North site	PM10	100	39.0	52.0	49.6	37.9	45.2	46.9
	S02	80	12.4	21.3	10.8	8.9	14.4	16.2
	NO ₂	80	22.5	25.2	16.7	14.6	11.3	21.7
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Haria water	PM 2.5	60	26.0	31.5	29.3	12.5	13.4	17.5
tank	PM10	100	37.3	55.3	53.6	39.1	40.8	46.9
	SO2	80	11.6	16.4	10.8	10.6	19.7	16.7
	NO ₂	80	24.5	25.3	16.3	14.8	11.8	19.2
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Annexure 3: Stack Details

Picet Picet Picegree O				- 1000 5440		MAY. 2022		JUL 2022	AUG. 2022	SEPT. 2022
Note				_						
Entroy Program PM 1500 mg/km3 226 Not Running 18.4 14.6 13.2 18.7	Sr. No.	Stack Details	Paramenter	Control of the Contro	TO SECURE STANDARD AND ALL OF THE	1915/07/1915/1915/1915	ACH (00.000) 1000 545	The Control of the Co	NAMES OF TAXABLE PARTY.	
Plant		van een een een een een een een een een e								
Prince P	1	Plant)		ma/Nm3	23.6	Not Running	184	14.6	13.2	18.7
Plote New Plotegree 0.1 ppm ND ND ND ND ND ND ND	2				-			100000	0.00000	
Dechlorinetion Plort Cl_y 30 mg/hm3 6.1 6.06 7.1 6.3 5.9 5.75	* ·	plant- New)	Phosgene	0.1 ppm			ND	ND	ND	ND
HC 20.0 mg/Nm3 6.27 5.9 7.3 6.47 6.06 5.6 5.6		Ta	la.	Ta a second						
Common stack of Cl2 9.0 mg/Nm3 4.25 4.56 3.1 4.42 5.28 5.05	3	Dechlorination Plant	- Control of the Cont	The second second second second second				333355		
HCI Sign unit 182			HCI	20.0 mg/Nm3	6.27	5.9	7.3	6.47	6.06	5.6
FCB Paint FCB	4		CI ₂	9.0 mg/Nm3	4.25	4.56	3.1	4.42	5.28	5.05
Solid Gas Scubber Soli		HCI Sign unit 1&2	HCI	20.0 mg/Nm3	4.13	4.68	3.18	4.54	5.42	4.92
Solid Gas Scubber Soli					FCB P	alnt				
Sulfuric Acid Gest Site) Sulfuric Acid Gest Site)	5	Foul Gas Scubber	SO ₂	40.0 mg/Nm3			Not in use	Not in use	Not in use	Not in use
Suffuric Acid Float SO1			NOx	25.0 mg/Nm3						
Acid Mist 50.0 mg/Nm3 13.8 10.3 6.5 10.6 11.3 10.2					Sulfuric Acid	(East Site)				
Acid Mist 50.0 mg/Nm3 13.8 10.3 6.5 10.6 11.3 10.2	6	Sulfuric Acid Plant	SO ₂			*30000000000000000000000000000000000000	0.7	0.62	0.7	0.62
Plant reactor HC 20.0 mg/Nm3 4.73 3.9 4.52 4 4.76 4 4 4.76 4 4 4 4 4 4 4 4 4					13.8			10.6	11.3	10.2
Plant reactor HC 20.0 mg/km3 4.73 3.9 4.52 4 4.76 4 4 4.76 4 4 4 4 4 4 4 4 4	7	ChloroSulfonic Acid	CI ₂	9.0 mg/Nm3	4.6	3.8	4.4	3.9	4.63	3.9
Spray Dryer		plant reactor	HCI	20.0 mg/Nm3	4.73	3.9	4.52	4	4.76	4
Spray Dryer		Į		243	Desorcing	l Plagt	7			
	8	Spray Dryer	PM	T150.0			246	17.2	219	246
Resorcinol Plant PM	107	(Resorcinol Plant)		mg/Nm3			5550005600	1400000	533353	ewirates
Incinerator	9		SO ₂	40.0 mg/Nm3	20.6	13.7	23.8	21.4	16.8	13.6
SO2 MO mg/Nm3 10.4 12.8 7.8 10.2					Inciner	ator				
SO2	10	Incinerator	PM	150.0	Not running	54.2	44.7	Not running	56.3	43.8
No Plant			SOz		ii 3	10.4	12.8		7.8	10.2
No Plant			NOx	25.0 mg/Nm3		16.2	184	-	149	171
Foul Gas Scubber SO2			1							
NOx 25.0 mg/Nm3 19.2 17.1 23.9 27.8 11.8 9.4	414	In to the	Ico	1400 100			174	20.0	20.4	100
12 Common Scrubber, Cl2 9.0 mg/Nm3 5.1 5.6 7.1 6.2 5.4 4.01 2.4D Plant HCl 20.0 mg/Nm3 5.24 5.75 7.29 6.37 5.55 3.9 Phenol	11	Four Gas Scubber		ENGRESS PROPERTY OF TARREST	~~~~	0506,36820	1520348A1	20.6	26.4	September 1
Common Scrubber; Cl2 9.0 mg/Nm3 5.1 5.6 7.1 6.2 5.4 4.01			NOx	25.0 mg/Nm3	19.2	17.1	23.9	27.8	11.8	9.4
2,4D Plant			1		2-4-D	Plant				
Phenol ND ND ND ND ND ND ND	12	Common Scrubber,	CI ₂	9.0 mg/Nm3	5.1	5.6	7.1	6.2	5.4	4.01
Dryer-1	222	2,4D Plant			5.24	5.75	7.29	6.37	5.55	3.9
Dryer-1		1	Phenol		ND	ND	ND	ND	ND	ND
14 Dryer-2 PM with Pesticide compound	13	Dryer-1	PM with	20.0 mg/Nm3						
Pesticide Compound	1.4	Dever 2		200 1-2	Not Demois	72	101	0.75	7.0	0.7
Dryer-3	14	Dryer-2		20.0 mg/Nm3	Not Running	1.2	10.1	8.75	7.9	8.7
Pesticide compound		D2		200 - 11 -	N . B					
Dryer-4	15	Dryer-3		20.0 mg/Nm3	Not Running	Not Running	Not running	Not running	Not running	Not running
Pesticide compound	10			200	N . B		· Marchael Common and	Dagerra and the second		TORREST CONTRACTOR
Dryer-5	16	Dryer-4	NO. 1117 13 23 5 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15	20.0 mg/Nm3	Not Running	Not Running	Not running	Not running	Not running	Not running
Pesticide	17	Davor 5		200	14.7	0.1	7.5	7.4	0.0	6.4
NBD Plant NBD	1/	Dryer-5		ZU.U mg/Nm3	11./	9.1	7.5	7.1	9.8	8.4
18 Spray Dryer PM 150.0 mg/Nm3 mg/Nm3 Not in use Not in use <td></td> <td></td> <td>compound</td> <td></td> <td>NDD D</td> <td>ant</td> <td></td> <td></td> <td></td> <td></td>			compound		NDD D	ant				
mg/Nm3	1 8	Spray Dryor	DNA	Tison	r		Not in use	Not in use	Not in use	Not in us-
19 Scrubber S-902 Phosgene 0.1 ppm ND	10	Spray Dryer	LINI	10 Y 2 S 30 S 3 S	NOT IN USE	NOUN USE	NOU IN USE	INOLIN USE	INOT IN USE	NOU IN USE
	19	Scrubber S-902	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
20 Scrubber S-801/802 NOx 25.0 mg/Nm3 14.8 10.2 8.9 10.4 13.8 15.6	25/25									
	20	Scrubber S-801/802	NOx	25.0 mg/Nm3	14.8	10.2	8.9	10.4	13.8	15.6

Sr. No.	Stack Details	Paramenter	Permissible	Obtained	Obtained	Obtained	Obtained	Obtained	Obtained
			Limits	Value	Value	Value	Value	Value	Value
				CP PI	ant				
21	MCPA	Cl2	9 mg/NM ³		Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20 mg/NM ³			1104110111119			
		SO ₂	40 mg/NM ³						
22	Fipronil	SO ₂	40 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20 mg/Nm3						
23	lmidacloprid	NH ₃	175 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
24	Pyrathroids	SO ₂	40 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20 mg/Nm3						
25	Stack at Amine Plant	NH₃	175 mg/Nm3	92	56	44	65	76	90
		-		MPSL	Plant			i.	
26	Phosgene Scrubbr at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
27	Central Scrubber at	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
	MPSL			, , ,	6 · · · · ·				
28	Central scrubber at	Acetonytryle,		NICO p	Not Running	Not Dominio	Not Running	Not Down	Not Running
28	Nico Plant	IPA		Not Running	INOT RUNNING	Not Running	Not Running	Not Running	Not Running
				Ester F	lont				
29	Scrubber at Ester	Formaldehyd	10 mg/Nm3		Not Running	Not Running	Not Running	Not Running	Not Running
	plant for Glyphosate	e		NOC I CATALINING	11931111119	, ne c ne ming			
30	Central Scrubber	HCI	20 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
	MCPA Plant								190 72
31	MPP plant scrubber	HCI Phosgene	20 mg/Nm3 0.1 ppm	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
_	1	rnosgene	0.1 ppiii	Atul We	st Site				
32	Shed A05/03/44	Cl ₂	9 mg/NM ³	4.1	6.1 Not Running Not Running	Not Running	Not Running		
		HCI	20 mg/NM ³	4.21	6.27	, no enterming		rior maining	, normalining
33	Shed B2/12/24	Cl ₂	9.0 mg/Nm3	5.72	6.2	4.9	3.6	3.45	4.9
	Reaction Vessel	HCI	20.0 mg/Nm3		6.37	5.03	3.7	3.54	4.93
34	Shed B18/02/24 Fan	SO ₂	40 mg/NM ³	17.2	Not Running	216	17.4	23.6	23.6
		Cl ₂	9 mg/NM ³	5.6		6.4	4.9	3.55	4.8
		HCI	20 mg/NM ³	5.75		6.58	5.06	3.65	4.93
35	Shed C5/20/15	Cl ₂	9.0 mg/Nm3	7.7	5.1	4.5	5.6	6.4	5.6
-	Chlorinator	HCI	20.0 mg/Nm3	-	5.24	4.62	5.75	6.57	5.75
36	Shed D Niro Spray	PM	150.0	62.8	58.4	Not Rupping	Not Running	Not Rupping	Not Running
55	dryer No. 45	1141	mq/Nm3	02.0	30.4	Hornaning	Hornand	140c Numming	Hornaning
37	Shed D Niro Spray dryer No.50	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
38	Shed E 7/12/49	PM	150.0	Not Running	49.3	Not Running	Not Running	Not Running	Not Running
20	Spray Dryer	CI	mg/Nm3	N D	6.2	7.0		4.2	N. (D.)
39	Shed F F6/1/15	Cl2	9.0 mg/Nm3	Not Running	6.2	7.3	6.9	4.2	Not Running
	Reaction Vessel	HCI	20.0 mg/Nm3		6.37	7.5	7.15	4.31	
40	Shed G 10/8/1 (receiver)	CI ₂	9.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20.0 mg/Nm3						
41	Shed H 11/6/17	Cl ₂	9.0 mg/Nm3	2.15	3.15	4.6	5.9	6.2	8.2
35873	chlorinator	HCI	20.0 mg/Nm3		7.8	10.7	13.1	6.86	8.4
42	Shed K K-13/3/4	SO ₂	2.0 kg/T	0.64	0.62	0.55	0.65	0.52	0.56
42	Final of Sulfuric acid	Acid Mist	50.0 mg/Nm3		14.1	116	17.8	14.8	16.2
43	plant Shed J15/09/25	HBr	_	ND	ND	ND	ND	ND	Not Running
10	5.104 J15/00/25	SO ₂	40 mg/NM ³	12.4	7.8	106	13.8	19.6	. we number
	J	JU2	+0 mg/NW	345.44	6.0	100	13.0	13.0	

Sr. No.	Stack Details	Paramenter	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
44	Shed J12/01/42	SO ₂	40 mg/NM ³	16	Not Running	20.7	15.6 5.5 5.65	23.8	Not Running
		CI ₂	9.0 mg/Nm3	3.2		7.1		6.2	
		HC1	20.0 mg/Nm3	3.28		7.3		6.37	
45	Shed J12/03/36	SO ₂	40 mg/NM ³	21.4	Not Running	17.2	15.6		Not Running
		HCI	20.0 mg/Nm3	7.1		10.6	3.8	Not Running	
46	Shed N Scrubber Fan N20/08/24	CI ₂	9 mg/NM ³	4.6	3.3	4.9	3.6	4.8	7.4
		HC1	20 mg/NM ³	4.73	3.96	5.07	3.7	4.93	7.6
47	Shed N Scrubber Fan N20/02/41	SO ₂	40 mg/NM ³	14.3	6.1	Not Running	5.1	7.9	17.1
48	Sulfer Black Plant	H₂S	er s	ND	ND	ND	Not Running	Not Running	Not Running
		NH ₃	175 mg/NM ⁹	65.6	55	44			
49	Sulfer Dyes plant	H₂S	77	ND	ND	ND	ND	ND	ND
		NH ₃	175 mg/NM ³	23.8	30.2	40.2	12.8	35	24.6
50	Flavors & Fragrance	HC1	20 mg/NM ³			Not Running	Not Running	Not Running	Not Running
				Atul Nor	h Site				
51	N-FDH Plant Catalytic Incinerator	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		SO ₂	40.0 mg/Nm3						
		NOx	25.0 mg/Nm3						
		Formaldehy de	10.0 mg/Nm3						
52	PHIN Plant	Phosgene	0.1 ppm	ND	Not Running	ND	ND	ND	Not Running
53	PHIN-II Plant	HC1	20 mg/NM ³	3.5	Not Running	Not Running	Not Running	Not Running	Not Running
54	DDS Plant (Pharma Plant)	NH ₃	175 Mg/Nm3	80	69.4	55	45		50.2
55	SPIC II Plant (DCDPS)	SO ₃		7.1	ND	17.2	4.35	40.8	18.1
56	SPIC I Plant	NH3	175 mg/Nm3	140	121	110	135	124	130
	SPIC IV Plant	NH ₃	175 mg/NM ³	136	123	115	125	128	115
57	SPIC IV Plant	Nn3	175 mg/NM	136	123	119	125	120	113

Annexure 4: Flue Gas Stack Details

1. Flue Gas Stack And it's Emission Control Measures:

Sr No.	Stack Details	Capacity TPH/ Stack Ht in m	Parameter	Permissible limit	APCD	Fuel
1.	FBC boiler E1	34/56	PM	100 mg/Nm ³	Electro Static	Coal/Lignite
			SO ₂	600 mg/Nm ³	Precipitator	
			NOx	600 mg/Nm ³		
2	FBC boiler E2	34/56	PM	100 mg/Nm ³	Electro Static	Coal/Lignite
			SO ₂	600 mg/Nm ³	Precipitator	
			NOx	600 mg/Nm ³		
3	FBC boiler E3	50/80	PM	100 mg/Nm ³	Electro Static	Coal/Lignite
			SO ₂	600 mg/Nm ³	Precipitator	
			NOx	600 mg/Nm ³		
4	FBC boiler W1	45/70	PM	100 mg/Nm ³	Electro Static	Coal/Lignite
			SO ₂	600 mg/Nm ³	Precipitator	
			NOx	600 mg/Nm ³		
5	Boiler (50 TPH2	50/106	PM	100 mg/Nm ³	Electro Static	Coal/Lignite
	Nos) (New		SO ₂	600 mg/Nm ³	Precipitator	
	boilers)W2,W3		NOx	600 mg/Nm ³		
6	Hot Oil Unit	H: 32.5	PM	150 mg/Nm ³	-	CNG
	(Resorcinol Plant)		SO ₂	100 ppm		
			NOx	50 ppm		
7	Hot Oil	H: 19	PM	150 mg/Nm³	-	CNG
	Plant shed-B		SO ₂	100 ppm		
			NOx	50 ppm		
8	Hot Oil	H: 17	PM	150 mg/Nm ³	-	CNG
	Plant shed-B		SO ₂	100 ppm		
	(Stand By)		NOx	50 ppm		
9	Thermic fluid	H: 12	PM	150 mg/Nm ³	-	CNG
	heater		SO ₂	100 ppm		
	of DCO/DAP Plant		NOx	50 ppm		
10	DG set 1010	H: 10	PM	150 mg/Nm ³	Adequate stack	Diesel
	KVA(Standby)		SO ₂	100 ppm	Height	
			NOx	50 ppm		
11	DG set 1500	H: 11	PM	150 mg/Nm ³	Adequate stack	Diesel
	KVA		SO ₂	100 ppm	Height	
	(Stand By)		NOx	50 ppm		

2. Process Gas Stacks & Its Emission Control Measures:-

Sr No.	Stack Details	Stack Height (meters)	Parameter	Permissible Limit	APCD
Atul Ed	ıst Site				
1	New Phosgene plant-Furnace	15	PM	150 mg/Nm³	Alkali & Water Scrubber
2	New Phosgene plant -Reactor	15	CO Phosgene	 0.1 ppm	Alkali & Water Scrubber
Caustio	Chlorine Plant		1 Hosgene	0.1 ββιτι	
3	Dechlorination	35	Cl ₂	9 mg/Nm3	Alkali Scrubber
5	Plant(Hypo unit)		HCI	20 mg/Nm3	Alkali Scrubbei
4	Common Stack of	25	Cl ₂	9.mg/Nm3	Alkali Scrubber
	HCl Sigri unit 1& 2		HCI	20 mg/Nm3	1
Sulfurio	Acid (East Site)				
5	Sulfuric Acid plant	30	SO ₂	2.0 kg/T	Water Scrubber With
			Acid Mist	50 mg/Nm3	DCDA System
6	Chloro Sulfonic	11	Cl ₂	9mg/Nm3	Caustic And Water
	Acid plant reactor		HCI	20mg/Nm3	Scrubber
FCB PI				1.0 0.0	
7	Foul Gas Scrubber	26.5	SO ₂	40mg/Nm3	Caustic scrubber
1	-1		NOx	25mg/Nm3	
Inciner		10	D) 4	150 /\ \	
8	Incinerator	40	PM	150mg/Nm3	Alkali& water scrubber
			SO ₂	40mg/Nm3 25mg/Nm3	-
NI Plan	<u> </u>		INOX	25HIg/MH3	
9	Foul Gas	26.5	SO ₂	40mg/Nm3	Caustic scrubber
J	Scrubber	20.5	NOx	25mg/Nm3	- Caustie Serubbei
NBD P			1		1
10	Spray Dryer	21	PM	150mg/Nm3	Water Scrubber
			NOx	25mg/Nm3	1
11	Scrubber S-902	25	Phosgene	0.1 ppm	Caustic scrubber
12	Scrubber S-	25	HCI	20mg/Nm3	Caustic scrubber
	801/802		NOx	25mg/Nm3	
2-4-D	& related Products:				
13	Common Scrubber;	5	Cl ₂	9mg/Nm3	Caustic scrubber
	2,4D Plant		HCI	20mg/Nm3	
		005	Phenol		5 50
14	Dryer-1	26.5	PM with Pesticide	20mg/Nm3	Bag Filter, Water Scrubber
15	Dryer-2		compound		Cyclone, Bag Filter,
16	Dryer-3				Caustic scrubber
17	Dryer-4				
18	Dryer-5				
MPSL F	Plant:				

19	Phosgene Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber
20	Central Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber
NICO	Plant:			•	
21	Central scrubber at Nico Plant	12	Acetonitrile		water scrubber
	cinol Plant				
22	Spray dryer	20	PM	150 mg/Nm ³	water scrubber
23	Scrubber vent	15	SO ₂	40mg/NM3	Caustic scrubber
24	Scrubber at Ester plant for Glyphosate	12	Formaldehyde	10mg/Nm3	water scrubber
Other					
25	MCPA	19	Cl ₂	9 mg/NM3	Alkali& Water Scrubber
			HCI	20mg/NM3	
			SO ₂	40mg/NM3	
26	Fipronil	19	SO ₂	40mg/NM3	Alkali& Water Scrubber
			HCI	20mg/Nm3	
27	Imidacloprid	20	NH ₃	175 mg/Nm3	Water Followed By Acid Scrubber
28	Pyrathroids	19	SO ₂	40mg/Nm3	Alkali & Water Scrubber
			HCI	20mg/Nm3	
29	Stack at Amine Plant	5	NH₃	175 Mg/Nm3	Caustic Scrubber
30	Central Scrubber MCPA Plant	19	HCI	20mg/Nm3	Caustic Scrubber
31	MPP Plant Scrubber	21	HCI	20mg/Nm3	Water & Alkali Scrubber
			Phosgene	0.1 ppm	
32	Flavors & Fragrances Plant	21	HCI	20mg/NM3	Water Scrubber followed by caustic scrubber
33	Sulphur Black Plant	19	H ₂ S		Alkali & Water Scrubber
	'		NH ₃	175 mg/Nm3	
34	Sulphur Dyes Plant	19	H ₂ S		Alkali & Water Scrubber
			NH₃	175 mg/Nm3	
Atul V	Vest Site		<u>.</u>		
35	Shed A05/03/44	19	Cl ₂	9 mg/NM3	Caustic Scrubber
			HCI	20 mg/NM3	
36	Shed B2/12/24	19	Cl ₂	9 mg/NM3	Caustic Scrubber
	Reaction Vessel		HCI	20 mg/NM3	
37	Shed B18/02/24 Fan	19	SO ₂	40 mg/NM3	Caustic Scrubber
			Cl ₂	9.0mg/Nm3	
			HCI	20 mg/Nm3	
38	Shed C5/20/15	19	Cl ₂	9 mg/NM3	Alkali& Water Scrubber
	Chlorinator		HCI	20 mg/NM3	
39	Shed D Niro Spray dryerNo.45	19	PM	150 mg/Nm ³	Water Scrubber
40	Shed D Niro Spray dryer No. 50	19	PM	150 mg/Nm³	Water Scrubber

41	Shed E 7/12/49 Spray Dryer	19	PM	150 mg/Nm³	Water Scrubber
42	Shed F 6/1/15	19	Cl ₂	9 mg/NM3	Alkali& Water Scrubber
40	Reaction Vessel	10	HCI	20 mg/NM3	All al'O \A/ata Caa lalaa
43	Shed G 10/8/1	19	Cl ₂	9 mg/NM3	Alkali& Water Scrubber
4.4	(receiver)	10	HCI	20 mg/NM3	Alleria NA/esta a Carrella a e
44	Shed H11/6/17 Chlorinator	19	Cl ₂	9 mg/NM3	Alkali& Water Scrubber
4.5		10	HCI	20 mg/NM3	Alleria NA/esta a Carrella a e
45	Shed K K-13/3/4 Final	19	SO ₂	2 kg/T	Alkali& Water Scrubber
10	of Sulfuric acid plant	10	Acid Mist	50 mg/NM3	Alleria NA/esta a Carrella a e
46	Shed J15/09/25	19	HBr	(NIN 42)	Alkali& Water Scrubber
47	01 114 0 104 140	10	SO ₂	40 mg/NM3	All 1:0) A /
47	Shed J12/01/42	19	SO ₂	40mg/NM3	Alkali& Water Scrubber
			Cl ₂	9.0mg/Nm3	_
40		10	HCI	20 mg/Nm3	
48	Shed J12/03/36	19	SO ₂	40 mg/NM3	Caustic Scrubber
49	Shed N Scrubber Fan	19	Cl ₂	9 mg/NM3	Caustic Scrubber
	N20/08/24		HCI	20mg/Nm3	
50	Shed N Scrubber Fan N20/02/41	19	SO ₂	40mg/NM3	Alkali& Water Scrubber
North	Site:				
51	N-FDH Plant Catalytic	31.5	PM	150 mg/Nm ³	Bag Filter
	Incinerator		SO ₂	40mg/Nm3	
			NOx	25mg/Nm3	
			Formaldehyde	10mg/Nm3	
52	PHIN Plant	15.5	Phosgene	0.1 ppm	Water Scrubber Followed By Two Stage Caustic Scrubber With Ammonia/Steam Injection At stack
53	DDS (Pharma Plant)	20	NH ₃	175mg/Nm3	Water Followed By Acid Scrubber
54	SPIC II Plant				Alkali & Water Scrubber
	(DCDPS)	30	SO ₃		
55	SPIC I Plant	30	NH ₃	175mg/Nm3	Water Scrubber Followed By Two Stage Caustic Scrubber With Ammonia/Steam Injection At Stack
56	SPIC IV Plant	2	NH ₃	175mg/Nm3	Alkali & Water Scrubber
			SO ₃		
57	PHIN II Plant	21	HCI	20mg/Nm3	Water Scrubber Followed
			Phosgene	0.1 ppm	By Two Stage Caustic Scrubber With Ammonia/Steam injection At Stack

Annexure 5: Details of Solvent Storage

Ann	exure 5: Deta	ils of Solven	t Storage	2			
Sr Name of No. Hazardous		Quantity		Place of	State &	Type of	Control Measures
No.	Substance	Max. qty. can be stored	Qty. stored	its Storage	Operating Pressure & Temp.	Hazard	Provided
1	Methanol (Group 5 - 2)	470 MT	350 MT	Methanol Storage Tank Farm	Liquid at RT atmos. pressure	Fire	Flame arrester, earthing dyke wall to over ground Tank fire water
2	Benzene	180 MT	100 MT	Resorcinol	Liquid at RT atmos. pressure	Fire	Isolated storage, FLP, Flam arrester, Breather valve, Ll, Fire hydrant, sand etc.
3	Xylene	60	30	MPSL- NICO Plant	Atmospheric Normal Temp.	Fire	Dyke wall, Fire hydrant line, FLP, Spark arrester, Prohibited for vehicle movement &unauthorized person.
4	Methanol	650 m ³	50 m ³	Methanol Tank farm north site.	Liquid at RT, atmos. Pressure	Fire & Toxic spill	Isolated storage, FLP, Flam arrester, Breather valve, LI, Fire hydrant, sand etc.
5	Toluene	40 m ³	30 m ³	Phin & PO plant	Liquid at RT, atmos. Pressure	Fire	Isolated storage, FLP, Flam arrester, Breather valve, LI, Fire hydrant, sand etc.
6	Toluene	120 KL	100 KL	Shed C	Atmo. Press and temp.	Fire &Chemi cal spillage	Underground tank, prohibited are, FLP, foam trolley etc.
7	Ethanol /Methanol	51 KL	40 KL	Shed N & A	Atmo. Press and temp.	Gas leakage, Spill	Respirators, Dry Sand, Dyke wall, spare tank
8	МСВ	105 MT	100 KI	Shed C	Atmo. Press and temp.	Fire &Chemi cal spillage	Underground tank, prohibited are, FLP, foam trolley etc.

Annexure 6: All Hazardous materials other than solvent are stored with details along with control measure

Sr No.	Name of RM	МОС	Tank type	Nos of tank	Capacity	Control Measures Provided
1	65% Oleum	MS, IS- 2825	Above ground	2	65 MT	Dyke wall with valve, do not allow the spill to mix with water, vent with Acid seal, spare storage tank for emergency transfer, Dry sand beds for spill Control, tank level meter
2	Chlorine	CS	Above ground	4	200	Two standby tank, DCS controlling, Hypo scrubbing, SCBA, Emergency chlorine kit & hood blower etc.
3	Epichloro- hydrin	MS	Above ground	6	55 M ³	Flame arrester earthing, dyke wall with valve which do not allow liquid spill to go to normal drain.
4	Sulphur Trioxide (Group 2)	MS	Above ground	2	13 MT	Dyke wall with valve, with valve do not allow the spill to mix with water, vent with Acid seal, spare storage tank for emergency transfer
5	Ammonia Anhydrous	MS	Above ground	1	10	High Alarm switch Water sprinkler, Fog Nozzles, Dyke wall
6	65% Oleum	MS	Above ground	2	72	Respirators, Dry Sand, Dyke wall, Spare tank, High alarm switch
7	Caustic	MS	Above ground	4	530 MT	Dyke wall, LI & LT, DCS controlling etc.
8	Hydrogen	MS	Above ground	1	100 nm ³	Prohibited for men & vehicle movement, Isolated storage, FLP, Flam arrester, PG & PT, Fire hydrant, 7 Fire extinguisher etc.
9	Chloro Sulphonic Acid	SS 316	Above ground	4	30	Respirators, Dry Sand, Dyke wall, spare tank
10	Sulfuric acid	MS	Above ground	4	800	Emergency tank, Dyke wall, LT, DCS controlling, Level alarm etc.
11	Liq. SO₃	MS	Above ground	3	40 MT	Emergency tank, LT & LI, DCS controlling, Level alarm etc.
12	HCI	PP FRP	Above ground	3	200 KL	Dyke wall, LI & LT, DCS controlling etc.

Mitigation Measures as per risk assessment report:-

- Secondary Containment to all storage areas of Hazardous materials with leakage collection system is provided.
- Spill kits are made available at all locations of hazardous materials.
- Fire hydrant system is provided at Hazardous materials storage area.

Annexure 7: CSR Activities

		Ltd. to September 2022		
Sr. No.	Name of Project	Location Village, District (State)	Amount Budgeted for the FY 2022-23 (in ₹)	Amount Budgeted for the FY 2022-23 (in ₹)
1	Enhancement of educational practices in Kalyani Shala	Atul, Valsad (Gujarat)	40,00,000	16,57,545
2	Improvement of teaching methodology for primary school children - Adhyapika project	Valsad (Gujarat)	85,00,000	26,52,737
3	Support to Eklavya Model Residential School -Atul Vidyamandir	Pardi, Valsad (Gujarat)	15,00,000	6,70,492
4	Support to develop a school in a tribal area	Chondha, Navsari (Gujarat)	2,00,000	47,628
5	Provision of scholarships to needy and meritorious students	Valsad (Gujarat)	10,00,000	1,52,044
6	Provide assistance to lesser privileged children	Valsad (Gujarat)	11,00,000	6,98,352
7	Provision of education kits to children	Valsad (Gujarat)	8,00,000	7,43,660
8	Conservation of manuscripts	Ahmedabad (Gujarat)	50,00,000	-
9	Provide assistance to children with special needs	Bharuch (Gujarat)	1,00,000	30,000
10	Promote learning and life skills among children	Bangalore (Karnataka)	2,00,000	<u> </u>
11	Contribution towards publication of books on Indian culture Ecology Philosophy	Jaipur (Rajasthan)	3,50,000	-
12	Support to develop a school in West Bengal	Murshidabad (West Bengal)	2,00,000	2,00,000
13	Skills training to youth as apprentices	Valsad (Gujarat)	1,10,00,000	72,28,747
14	Empowerment of women youth through various vocational training courses	Valsad (Gujarat)	30,00,000	17,17,601

15	Develop micro entrepreneurs to provide sustainable livelihood	Valsad (Gujarat)	15,00,000	3,02,051
16	Create livelihood opportunities for tribal families by providing cows	Valsad (Gujarat)	35,00,000	-
17	Empower women through self-help groups	Valsad (Gujarat)	20,00,000	11,55,194
18	Enhancement of rural health through health camps	Valsad (Gujarat)	25,00,000	8,07,978
19	Establish Atul Medical Diagnostic Centre	Atul, Valsad (Gujarat)	2,00,00,000	-
20	Promote health and well-being of adolescents and women	Valsad (Gujarat)	25,00,000	11,31,758
21	Provision of blood units to the needy and deserted patients	Bharuch (Gujarat)	2,40,000	-
22	Upgradation of sports infrastructure and equipment	Atul, Valsad (Gujarat)	60,00,000	1,76,000
23	Promote Fit@50+ Women's Trans Himalayan Expedition	India	5,00,000	5,00,000
24	Provision of medical treatment to needy patients	Valsad (Gujarat)	15,00,000	15,43,144
25	Valsad Flood Releif			4,66,798
26	Develop community infrastructure in Atul Village	Atul, Valsad (Gujarat)	2,10,00,000	9,54,591
27	Infrastructure development in Atul and surrounding villages	Valsad (Gujarat)	50,00,000	9,405
28	Construction of toilet blocks in Kalyani Shala	Valsad (Gujarat)	80,00,000	(2)
29	Develop Ulhas cricket ground	Valsad (Gujarat)	50,00,000	-
30	Construction of toilet blocks at Samdoli Shikshan Sansthan	Samdoli (Maharashtra)	12,50,000	2,00,000
31	Establishment of solid waste management system in Atul village	Atul, Valsad (Gujarat)	35,00,000	15,78,322

Initiate solid waste management project in five villages	Atul, Valsad (Gujarat)	40,00,000	-	
Initiate natural resource management project	Atul, Valsad (Gujarat)	25,00,000	7,63,493	
Conserve energy through solar system	Valsad (Gujarat)	50,00,000	1,38,706	
Set up nature-based wastewater recycling systems	Valsad (Gujarat)	1,55,00,000	14,68,536	
Conserve water through various interventions	Valsad (Gujarat)	20,00,000	-	
Enhance green cover- Tree Plantation Project	Valsad (Gujarat)	20,00,000	13,12,364	
Protection of animals	Valsad (Gujarat)	5,00,000	1,21,575	
CSR budget (a+b+c+d+e+f)		15,24,40,000	2,84,21,906	
istrative overheads (OH)		75,60,000	-	
or Atul Limited (CSR budget + OH)		16,00,00,000	2,84,21,906	
1	Initiate natural resource management project Conserve energy through solar system Set up nature-based wastewater recycling systems Conserve water through various interventions Enhance green cover-Tree Plantation Project Protection of animals SR budget (a+b+c+d+e+f)	five villages Initiate natural resource management project Conserve energy through solar system Set up nature-based wastewater recycling systems Conserve water through various interventions Enhance green cover- Tree Plantation Project Protection of animals SR budget (a+b+c+d+e+f) istrative overheads (OH) Atul, Valsad (Gujarat) Atul, Valsad (Gujarat) Valsad (Gujarat) Valsad (Gujarat) Valsad (Gujarat)	five villages Initiate natural resource management project Conserve energy through solar system Valsad (Gujarat) Set up nature-based wastewater recycling systems Valsad (Gujarat) Conserve water through various interventions Enhance green cover- Tree Plantation Project Protection of animals Valsad (Gujarat) Valsad (Gujarat) Valsad (Gujarat) 20,00,000 Valsad (Gujarat) 20,00,000 Valsad (Gujarat) 5,00,000 SR budget (a+b+c+d+e+f) 15,24,40,000	

Annexure 8: Form V (Environmental Statement)

Atul Ltd

Utilities and Services Unit

Atul 396 020, Gujarat, India services@tul.co.in | www.atul.co.in (+91 2632) 230000

Atul|GPCB|Form V|2021-22

ID: 23158

September 20, 2022

To, Member Secretary, Gujarat Pollution Control Board, Paryavaran Bhavan, Sector 10-A, GANDHINAGAR - 382 010

SUB: Submission of form V.

Dear Sir.

We are enclosing herewith duly filled form – V for the financial year ending March 31st, 2022.

Kindly receive the same.

Thanking you,

Yours faithfully,

For Atul Ltd,

Hriday Desai

(Vice President - EHS Assurance)

C.C.

Regional Officer,

Gujarat Pollution Control Board

Vapi (Dist. Valsad)

Registered office: Atul House, G | Patel Marg, Ahmedabad 380 014, Gujarat, India CIN: L99999GJ1975PLC002859

[Form V]

(See Rule 14)

Environmental Statement for the financial year ending the 31st March 2022

Part - A

(i) Name and address of the owner/occupier of the industry operation or process.

Mr. B. N. Mohanan Occupier, Atul Limited, Atul – 396 020, Dist.: Valsad

- (ii) Industry category Primary (STC code) Secondary (STC code) Large scale Chemical Manufacturing Industry
- (iii) Production Capacity Please refer Annexure 1
- (iv) Year of establishment : 1952
- (v) Date of last environmental Statement submitted: September 22, 2021

Part - B

Water and Raw Material Consumption

(1) Water consumption m³/day

Process : 8411 kl/day Cooling : 1873 kl/day

Domestic : 376 kl/day

Sr. No.	Name of products	Process water consumption per unit of product output				
		During the previous financial year	During the current financial year			
		(1)	(2)			
1. Crop Protection		3.84 kl/mt	16.35 kl/mt			
2. 1	Bulk Intermediate		1.38 kl/mt			
3. (Colours	69.26 kl/mt	87.84 kl/mt			
4. P	harma & Polymer	4.22 kl/mt	5.27 kl/mt			

Page 1 of 27

(2) Raw material consumption

*Name of	Name of	Consumption of raw material per unit of output			
raw materials	products	During the previous financial year	During the current financial year		

Please refer Annexure - 2

Part - C
Pollution discharged to environment/unit of output

(Parameter as specified in the consent issued)

Pollutants	Quant pollut discho (mass	ants irged	Concentro pollutants in dischar (mass/vol	ges	Percentage of variation from prescribed standards with reasons
(a)Water (b)Air	COD SO2 NOX HCI CI2 NH3 Phosgene SO2	: 21.87 : 14.71 : 6.85 : 5.65 1 : 94.46		9 mg/lit) (Process S	NIL Stack)
(c)Air	PM SO2 NOx	: 274.8	Mg/Nm³ 9 Mg/Nm³ 5 Mg/Nm³	(Flue gas si	tack)

Page 2 of 27

^{*} Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

Part - D

Hazardous Wastes

(as specified under Hazardous Wastes (Management & Handling) Rules, 1989)

Hazardous Wastes	Total Quantity (kg)		
	During the previous financial year	During the current Financial year	
From process	36136215	73671645	
From pollution control facilities (ETP sludge and Salt from MEE)	22269000	29847720	
Total	58505215	103519365	

Part - E

Solid Waste

Solid Wastes	Total Quantity (kg)		
	During the previous financial year	During the current financial year	
(a)From process (Fly Ash)	97007642	79867000	
(b)From pollution control facility (c) (1) Quantity recycled or re-utilised within the unit	Nil	Nil	
(2) Sold	97007642	79867000	
(3) Disposed			

Part-F

Please specify the characterisation (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

Please Refer Annexure - 3

Part - G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production.

Please Refer Annexure - 4

Page 3 of 27

Part-H

Additional measures/investment proposal for environmental protection abatement of pollution, prevention of pollution.

Please Refer Annexure - 5

Part - I

Any other particulars for improving the quality of the environment.

- New collection tank at central ETP is under construction and other modifications is under construction stage and after completion of all installation, central ETP plant will be operate on SCADA system.
- To reduce moisture content in the gypsum generated from neutralization of effluent, we are upgrading our EMS by installing membrane type filter press followed by paddle dryer at West site.
- 3. Implementation of New HRTI Clarifier as a substitute of CFI at west site ETP.
- Installation of MEE for High TDS stream from 2, 4 D plant is almost completed and commissioned will be start by Oct. 2022.
- Additional 33 distillation system upgraded solvent recovery systems for advanced instrumented controls.
- 6. Additional 33 nos of toxic gas detectors installed at prominent location.
- 7. PTS & screw conveyors provided for close powder charging initiatives.
- 8. Additional 20 nos of close sampling systems provided for corrosive liquids.
- Enhancement of storage spaces: east site RM warehouse and north site FG warehouse commissioned.
- 10. Company has planted 48000 number of saplings in FY 2021-22

Page 4 of 27

Annexure: 1: list of Products

Product	Consented
	Quantity TPA
Azo dyes	6600
Sulfur Black	9999.96
Sulfur Dyes range	300
Naphthol range	900
Fast Color Bases	480
Disperse dyes	1422
Optical Brighteners	120
Reactive Dyes	1527.6
Vat dyes	1260
Caustic soda/potash & sodium sulfide	48000
Liquid Chlorine /Hcl/Hydrogen	42000
Carbamate group of Agrochemicals	519.6
Diuron	2640
Trichlo Carbon	99.6
Cartap Hcl	600
Carbendazim	250.8
Herbicides (2,4-D & related products)	26040
MCPA	De Place Company
Pyridine based Insecticides & herbicides chemical	349.92
Imidacloprid	Part and the second
Triazole based Fungiside	20.04
Pyrethroides	120
Sulphonyl Urea	423
Glyphosate	780
Isoprothiolane	219.6
Fipronil	60
Formulations	2400
Buprofesin	48
Imazethpyr	21.96
Kresoxim Methyl	24.96
Fenoxaprop	9.96
Cyhalofop	9.96
Pyrazosulfurone	6
BisPyribac Sodium	9.96
Azoxystrobin	24.96
Quizalofop	15

Page 5 of 27

Thiamethoxam	120
Metribuzine	120
Diafenthiurone	50.04
Mabendazole •	24
Tolbutamide	30
Quiniodochlor	180
Bulk Drugs & Intermediates	115.2
Dechlofenac sodium / potassium	30
Atenolol	20.4
Fresamide	15.6
Trimethoprim	10.8
Para hydroxy acetophenone	20.4
Para hydroxy phenyl acetamide	36
Acyclovir	62.4
Bathenechol	62.4
Pharma Intermediates & Chemicals	3600
Epoxy Resin	31200
Vinyl Easter Resins	450
Ketone Formaldehyde Resins & Sulphonamide,	249.6
Formaldehyde Resins	
UF/MF/PF/DiCyandiamide Resins	3250.8
Polyamide resins	1940.4
Polygrip TPU based	500.04
Polygrip rubber based	3600
Anthraquinone, Naphthalene, Benzene Intermediates.(Including Beta – Napthol & BON Acid)	8880
Meta hydroxy phenol	5520
Carbamite	360
Chlorzoxazone & other related products	60
4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride	39.6
Imino Dibenzyl 5 carbonyl Chloride	9.6
Formaldehyde and base products.	38400
Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts	138600
Sulpha Drug Intermediate	2325.6
Acetyl Sulphanilyl Chloride and its derivatives.	18000
Acetanilide	6000
Sulpha Methyl Phenazole Sodium	13.2
Pyrazole Base	126
Sulphanilic acid	300

Page 6 of 27

Bis Phenol A	5000.4
Hexamine Hexamine	1800
Epoxy Intermediates	285.6
Hardener & Auxiliaries	6000
Hardener Intermediates	8400
Bisphenol S & Intermediate Chemicals	199.2
Sodium Thio sulphate (dry basis)	10800
Sodium Thio sulphate (wet basis)	22800
Phosgene	5000.004
HX-13059	60
Anisole	1992
Resoform 18,19,20	1020
1,3 Cyclohexanedione	960
Agro, Pharma intermediates, Isocyanats &	4980
Carbonat Esters, etc.	ention of the
Trans-4-MCHI	CODE OF
p-Anisyl chloroformate	
DI-TERT-BUTYL DICARBONATE (Boc. anhydride)	A Sept Sept 5
N, N- Disuccinimidyl Carbonate	etereup mo
Avobenzene	999.96
Octacrylene	999.96
OctaylMethoxy Cinnamate	2400
Anethole	1999.92
Raspberry Ketone	1200
P-AninylPropanal	1200
Grand Total Production Sodium Thiosulphate	466922.004
(dry basis)	Alex
Grand Total Production Sodium Thiosulphate	478922.004

Page 7 of 27

Annexure: 2: List of raw material

RAW MATERIAL	TPM
Acetanilide	52
Acetic Acid	97.08
Acetic Anhydride	6.5
Acetone	5490.8
Acetonitrile	169.18
Activated carbon	1
Alum	40
Aluminium Chloride	289.32
Aluminium ingots	18
Ammonia gas liquor 25%	317
Ammonium acetate	20.58
Anhydrous Ammonia	9
Aniline oil	43
Anisole	173.33
Anthraquinone	6
Barium carbonate (100%)	58.88
Benzene(KL.)	660
Benzophenone	101.5
Bis Phenol A	3398.63
Carbon dioxide gas	346.53
Castor oil	35
Caustic flakes	3466.98
Caustic Potas Flakes	75
Caustic Soda Lye	3201.76
Chlorine	3822
Chlorosulphonic Acid	250
Chlroprine rubber	45 .
Copper chloride	4
Cresol	133
CS _z	12.09
Cyano Pyrazole	5
Cyanoacetic acid	32.92
Cyanuric Chloride	18

Page 8 of 27

Cyclohexane	57.08
Darco	9.77
DBU	23.24
Di Chloro Diphenyl sulphone	107
Di Isopropyl Malonate	24.72
Di methyl Sulfate	286.44
Dibutyl phthalate	7
Dichloro aniline	151.4
Dimethyl Amino Dichloro Propane Hydrochloride	40
Dimethyl carbonate	5.73
Dioxane	95.89
Divyol oil	28.77
DMA	44.8
DMA Tosylate	9
DMF	68.15
DPS	1
EDA	69.32
EDC	331.99
Epichlohydrine /recovered ECH	4911
Ethanol	5.31
Ethyl acetate	4586.05
Ethyl hexanol	135
Ethylene Dibromide	22.48
Ethylene Dichloride	12.14
Flocculating agent	1799.95
Formaldehyde	106.07
Glacial acetic acid	549.57
Glycerin	24
Guanidine Nitrate	33.95
H_2O_2	55.42
H-Acid	12
HCI AND	4924.8
Hexa Hydro Phthalic anhydride	9
Hexane	29.32
Hydrated Lime	2000
Hydrogen (g)	50.43
Hydroxyl amine.HCI	480.75

Page 9 of 27

n Fillings ne stone powder A anganese Dioxide CB	110.65 339.55 50
n Fillings ne stone powder Aunganese Dioxide CB	50
ne stone powder A anganese Dioxide CB	
anganese Dioxide CB OC	1057
anganese Dioxide CB OC	1257
CB CC	26.08
OC .	220
	123
	406.29
ethanol	1100
ono Chloro Acetic Acid	2170
phenoxy benzaldehye	2
Butanol	999
Hydroxy Succinimide	419.15
₂ SO ₃	10.5
pthalene	60
Hexane	54.13
ric Acid 60%	50
ric Acid 98%	95
ro guanidine	52.49
rogen	1585 NM3/hr
I Dimethyl Aniline	32.57
cresol	503
eum 25%	140
eum 65%	1221
ygen	49.7
Anisaldehyde	118.6
Anisic aldehyde	179
raffin oil	9.13
F and the second	28.35
cresol	860.91
enol enol	1350.56
osgene	180
osphoric acid	54.5
thalic anhydride	55
IIDA	158.78
tassium Chloride	360

Page 10 of 27

Potassium hydroxide	264.8
Propionyl chloride	167.16
Prpanaldehyde	51
PTBP Resin	12
Pure 4-Methyl cyclohexyanol	8.15
Rainey Ni catalyst	50.34
Reso - Tar	49.23
Resorcinol	246.24
SNA	37.09
Soda Ash	209.38
sodium bicarbonate	130.33
Sodium bisulphate	548.28
Sodium Carbonate	117.09
Sodium Chloride	6000
Sodium hypochlorite	3639.31
Sodium metal	667.8
Sodium methoxide (Powder solution)	131.85
Sodium Sulphide	100.4
Sodium Thiosulphate	195
Sodium-t-butoxide	755.3
Solvents	275.42
Styrene	29.92
Sulfinate	1
Sulfuric acid	2596
Sulfuryl chloride (SO2CL2)	376
Suphur Powder	2430.3
Synthetic cresol	5
Tamol MNO	50
t-Butyl alcohol	29
Tertiary butyl amine	0.89
TFE	9
THE	4151.74
Thionyl Chloride	3
Toluene	200
TPU	6.25
Tri ethylenetetramine	13
Tribtyl Amine	778.13

Page 11 of 27

	*
Triethyl amine	138.52
Urea	183
10% Brine solution	684.87
10% FeSO ₄	23.47
2, Chloro 5-methyl chloro pyridine	17
2,4-DNCB	440.85
2-[Nitroimino] imidazolidine	14.82
2-4 Di chloro Aniline	5.5
2-Amino-4,6 dimethoxy pyridine	27.95
2-chloro-5- methylchloro-pyridine	21.75
2-chloro-5-chloro methyl thiazole	7.8
2-Ethyl hexanol	56.5
3-methyl-4-nitroimino perhydro-1,3,5- oxadiazine	7.6
4-amino-6-tertiary- butyl-3-mercapto- 1,2,4-triazinone	10.1
4-methoxyacetophenone	60.88
4-Methoxybenzyl alcohol	376.41
4-t-butylbenzoicacid	82.81
Fuel:	
Coal / Lignite	46925
Diesel Oil (KI)	640
Furnace oil (KI)	1100
Natural gas (m3)	200000

Annexure: 3: Description of Solid Waste at Atul

Description of waste	Physical form	Calorific Value Cal / gms	Biodegradability	Nature / Chemical composition of Waste	Mode of Disposal
Used oil, KI	Wet cake		Biodegradable	Lubricant oil with minor contamination	Collection, Storage, Transportation, sell to registered refiners/recyclers.
Wastes / residues / contaminant cotton rags or other cleaing material	Solid		Biodegradable	Lubricant oil with minor contamination	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator.
Sludge & filters contaminated with oil,	Semi solid			9 (4.18)	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator.
Membranes	Solid	- 2000 - 2000 - 2000	ervicus en ca Gripula	Polyfluoro & Polycarboxylic groups	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Waste Resin,	Solid		Non biodegradable	Polymer	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL

Page 13 of 27

Sulfurised Carbon,	Solid	6000		Carbon and impurity of product	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Activated Carbon,	Solid	6000	a south	Carbon and impurity of product	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Brine purification sludge,	Sludge	No Calorific Value	Non biodegradable	Inorganic compounds e.g. CaCo ₃ , Mg(OH) ₂	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Sulphur sludge,	Solid	5000	Partially Bio- degradable	Inorganic compounds and Sulphur	Collection, Storage, Transportation, Disposal at TSDF OR send to cement industry for co- processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Hot Gas filter Ash,	Solid	No calorific Value	Non biodegradable	Inorganic Material	Collection, Storage, Transportation, Disposal at own TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Bottom Sludge after recovery of Sulphur Sludge,	Solid	5000	Partialy Biodegradable	Inorganic	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL

Page 14 of 27

Waste Catalyst,	Solid	No calorific Value	Non	Inorganic, Not	Collection, Storage, Transportation, Disposa
		value	biodegradable	explosive, Non Reactivie	at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Spent Solvents, Kl/Month	Liq			Solvent	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user.
Various type of Residue	Solid	6500	Partially Biodegradable	Polymeric aromatic Organics.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
OCBC / OCT distillation residue,	Visc. Liq.	8000	Not Bio- degradable	Polymeric aromatic compound.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
waste residue Bulk Intermediate (meta hydroxy phenol) (Tar),	Solid			10-12% Hydroxyl based benzene derivative	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co- processing at GGEPIL OR disposal at common facility at BEIL

Page 15 of 27

Waste residue (from	Solid			St. In the second like	Collection, Storage, Transportation, Disposal
resorcinol plant)				Spine State	by Incineration at own Incinerator OR selling to actual user OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Gypsum (From meta hydroxy phenol Plant),	Solid	Not Applicable	Non biodegradable	Inorganic Compound Mostly Calcium Sulphate 75 - 77%, Moisture 23-25%	Collection, Storage, Transportation, Disposal at own TSDF OR selling to actual user OR send to cement industry for co- processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Sodium Sulphite,	Solid	Not Applicable	sedimul Sedimul Victoria	Inorganic Compound, Mostly Sodium Sulphite 70-75%, Moisture 25-30%	Collection, Storage, Transportation, Disposal at own TSDF OR selling to actual user OR send to cement industry for co- processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Waste/Salt Lime Dust	Powder		77 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	Inorganic Compound	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Waste from Urea Formaldehyde Polymer product,	Solid	3500	Bio-degradable	Organic polymeric compound	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL

Page 16 of 27

Sludge containing	Tar	5200	Bio-degradable	Polymeric organic	Collection, Storage, Transportation, Disposal
higheramino compound,				amines.	by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Filter cake of Epoxy resins with resin contamination	Semi Solid	3200	Bio-degradable	Polymeric organic compound	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Aluminium Hydroxide,	Solid	No calorific Value	Non biodegradable	Mostly Al Hydroxide	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Iron sludge,	Solid	No calorific Value	Non biodegradable	Mostly Iron, oxide	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Brass residue,	Solid	No calorific Value	Non biodegradable	Mostly Copper & Iron.	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Still / Other residue,	Tar	6500	Partially Bio- degradable	Polymeric aromatic Organics.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co-

Page 17 of 27

1 Section 1	ingos (Inc.	V#860	\$60,00 Mg	a callegori E Callader inco	processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Darco / filter aid sludge,	Solid	2500	Partially Biodegradable	Mainly Carbon.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Iron Residue,	Wetcake		Non biodegradable	Water, iron	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Hyfio sludge,	Wet cake			0.87 % Specific gravity, 80% solid, Inorganic & organic content	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
PER crystal residue,	Semi Solid	DIFFE ASS		Specific gravity 1,1557, Organic	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL

Page 18 of 27

Filter aid sludge for Hg recovery,				Containing Hg	Collection, Storage, Transportation for recovery of mercury
Aluminium Ash,	Solid	-	Non biodegradable	Water, oxides of Aluminium & Aluminium Metal	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
N.B.Tar / ODCB Tar	Semi Solid	-		Lo acquisit per successive and acquisit per successive acquisit per successive and acquisit per successive acquisit per success	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
ONT Tar	Solid / Tary	-		- Division of the control of the con	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Copper Hydroxide Wet cake	Solid	Not applicable	Non biodegradable	Copper Hydroxide	Collection, storage, Transportation and sale to authorized industry having permission under rule-9 of Hazardous & other wastes (Management & Transboundary Movement) rule-2016
Dust from Air Filtration System,	Solid	-		Residual product particles	Collection, Storage, Transportation for reprocessing and reusing

Page 19 of 27

Spent Acid	Liquid	Not applicable	Non biodegradable	Sulphuric acid	Collection, storage, transportation and sel
	2019			boliche Handalika ka p	to authorized industry having permission under rule-9 of Hazardous & other wastes (Management & Transboundary movement)
					rule-2016 Or sell to: M/s Shree Cement Ltd., located at Village Ras, Jaitaran Dist: Pali & at Bangurnagar, Beawar Dist: Ajmer, Rajasthan.
Spent Organic	Liquid	* 11-1 (1990)	Torrie Villa	Mainly contains Spent	
solvent				Organic solvent	Collection, storage, Transportation and sale to authorized industry having permission under rule-9 of Hazardous & other wastes (Management & Transboundary Movement) rule-2016
Waste Residue (Phin)	Solid				Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co-
	*				processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR OR disposal at common facility at BEIL
DCDPS waste	Solid				Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling
	8.00 20.00				to actual user OR co-processing at RSPL.
Waste from Pharma	Solid			National Association of the Control	Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co- processing at GGEPIL OR disposal at common facility at BEIL.
ntermediates	Julu			** (A) (A) (A) (A)	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co-

Page 20 of 27

					BOTH BLOCK B	processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Spent Carbon catalyst	Solid		District	L Book &	Production (constitution of the constitution o	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Spent carbon,	Solid	6000	ar sala sauk	Biodegradable	Carbon cake contains aq. Methanol Aqueous Carbon Cake	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Date expired, discarded and off- specification product,	Solid	-	percent	Tion parties	C SAME	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Spent Mother liquor, Kl/Month	Liquid		Sprain	EME TO S	Mainly contains Spent Organic solvent	Collection, Storage, Transportation for recovery and reusing
Spent Solvents, Kl/Month	Liq		tá0.nat	· lad	Solvent	Collection, Storage, Transportation for recovery

Page 21 of 27

Still / Other residue,	Tar	6500	Partially Bio- degradable	Polymeric aromatic Organics.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Pyridine based insecticides & herbicides (Darco / Filter aid Sludge),	Solid	2500	Partly biodegradable	Mainly carbon	
Sulfonyl Urea (Residue),	Solid	6500	Partly biodegradable	Polymeric Organic	processing on Apply Of Consulta
Triazole based Fungicides (Residue),	Solid	6500	Partly biodegradable	Polymeric Organic	To make address to the receiver of the state
Pyrethroides	Solid	6500	Partly biodegradable	Polymeric Organic	CONTRACTOR COMMUNIC
Dust (Agro plant)	Solid *	18060	Bolisti	Mixture of Dust, Rust & Spillage chemicals	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Hyflo,	Semi Solid	No Calorific Value	Non biodegradable	Non flammable, non reactive, partly organic -Inorganic	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Dust from Air Filtration System,	Solid	-	+	Residual product particles	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at

Page 22 of 27

				To The same	BEIL
Liners /Bags, NOs	Solid	NA	NA	Without any Chemical contamination after decontamination	Collection, Storage, Transportation and sell after decontamination OR Collection, Storage, Transportation and sell to
Drums/HDPE Carboys,	Solid	NA	NA	Without any Chemical contamination after decontamination	authorized party/vendor OR Reuse after decontamination
Chemical containing residue from decontamination and disposal,	solid	ingar rearr lacks	* 100 mg	(08 28 (19 0) (19 0)	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator.
Flue gas cleaning residue,	Solid	picaso	trono de a		Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Toxic metal containing residue from used-ion exchange material; in water purification,	Solid				Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Sludge from ETP, Gypsum from ETP, Chemical Gypsum, sludge from waste water treatment	Semi solid	No Calorific Value	Partly biodegradable	Mostly gypsum	Collection, storage, Transportation, disposal at OWN TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
MEA distillation residue,	Visc. Liq.	9500	Partly biodegradable	Polymeric aromatic compound	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co-

Page 23 of 27

		A STATE OF THE STA			
100/01	als A	4 186	Solita	COSTIE COSTIENT OF THE PROPERTY OF THE PROPERT	processing at cement industry OR co processing at SEPPL OR co-processing a GGEPIL OR disposal at common facility atBEIL
Spent Catalyst,	Solid	THE PROPERTY.	pasivis pasivis	Monte est min	Collection, Storage, Transportation, Disposa at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Sludge from wet scrubber,	Solid				Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Incineration ash,	Solid	No Calorific Value	Non biodegradable	Inorganic compounds e.g. Silica, NaCl.	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Salt from MEE	Solid	Not applicable	Non biodegradable	99% Sodium salt	Collection, storage, Transportation, disposal at OWN TSDF OR selling to actual reuser OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Dilute MnSo4	Liquid		-		Collection, Storage, Transportation, Disposal at M/s Atul Limited, Plot No. 297, GIDC Estate, Ankleshwar, Bharuch- 393002
2,6 Dichloro phenol	Solid		-	Phenolic compound	Collection, storage, Transportation, disposal by selling to actual reuser OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at

Page 24 of 27

					SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
2,4,6 Trichloro phenol	Solid			Phenolic compound	Collection, storage, Transportation, disposal by selling to actual reuser OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
p-CBSA/Na-Salt	Solid			pCBSA	Collection, storage, Transportation, disposal by selling to actual reuser OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
High TDS / High COD effluent	Liquid	-	-	Annual Control of the	Collection, storage, Transportation, disposal to our own MEE/ Incinerator and/or at common GPCB approved facility
30% HCI ,	Liquid			Spent acid	Collection, storage, Transportation, utilized in own plan for captive consumption OR sell to those units who having permission of rule 9 under the Hazardous & other wastes (Management & Transboundary Movement) rule-2016

Annexure: 4

Water Conservation

Following actions were taken for water conservation during recent year.

- 1. Use of treated effluent in place of raw water in scrubbers.
- 2. Reuse of wash water in plant process
- 3. Reuse of boiler blowdown water for cooling water make up at cooling tower after passing it through PHE for heat recovery

Rain water harvesting: In few plants, rain water is being recharged from the terrace and has been used as a makeup of cooling tower during the monsoon season.

We already have two numbers of check dams in natural storm water drains to collect and harvest rain water in Monsoon.

We have 2 ponds with approximate storing capacity of 14000 KL to store surface runoff coming from Parnera hill and in use.

Company has harvest 10.59 lac KL rain water during 2021.

Energy Conservation

Electricity forms one of the important components of energy used at Atul Limited. Major part of electricity used at Atul, is produced in the coal based captive power plant.

Energy Conservation Measures:

- 1. Installation of energy efficient cooling water and chilled water pumps.
- 2. Replacement of old motors by energy efficient motors
- 3. Heat recovery from steam condensate
- 4. Controlling steam pressure of steam ejectors.
- 5. Optimization of pump size as per actual operating requirement
- 6. Replacement of high pressure air compressor by low pressure air compressor for process air requirements

Page 26 of 27

Annexure: 5

Details of Investment for Environment Protection for the year 2021-22

Sr.No	Parameter	Recurring Cost per annum (Rs. in lacs) 2021-22
1	Air Pollution Control	
2	Liquid Pollution Control	5464
3	Environmental Monitoring and Management	47
4	Solid waste Disposal	176
5	Occupational health	41
6	Green belt	14
Total		5742

Page 27 of 27

Annexure 9 : Environmental protection measures and safeguards proposed in the project

Sr No.	Potential impact	Action to be followed	Parameters for monitoring	Frequency of monitoring	Status of Compliance
1	Air Emission	Adequate stack height APCM-Multi Cyclone & Scrubber is provided as APCM AAQ within the project premises and nearby habitations to be monitored. All vehicles to be PUC certificate	SPM, RSPM, SO2 and NOx, Vehicle logs to be maintained.	Monthly through external agency NABL Approved	Stack and APCM details are provided in EC Compliance Point No.4 of Conditions. Quality of gaseous emission and AAQ
2	Noise	Noise generating from operation of boiler, cooling towers &plant & M/c area to be monitored.	Spot noise level Recording	Monthly through NABL Approved external agency	Carried out at the periphery of whole plant premises
3	Waste Water Discharge	Compliance to the wastewater discharge standards complete effluent treatment Plant-Primary + Secondary & MEE, ZLD is achieved	pH, TSS, TDS, COD, BOD, Oil & Grease	Monthly through NABL Approved external agency	Discharge effluent is analyzed on daily basis.
4	Solid/ Hazardous Waste	Check compliance of HWM rules	Quantity and quality monitoring	Periodically	Details are provided in EC compliance point No.10 of specific conditions
5	Non routine events and accidental release	Plant drawn, considering likely emergencies and steps required to prevent/limit consequences.	Mock drills and records of the same.	Periodic during process activities	Every year 4nos. mock drills carried out in the premise on rotational basis covering all plants.
6	Green Belts	Vegetation, green belt development	More than 50,000 Trees / Year	Once a year	Green belt area is about 36% land area. Total area: 1126078.27 sq.mt Green belt area: 409030.00 sq.mt

Atul Ltd

Project: Expansion of dyes, Chlor-Alkali, Pesticide, Bulk Drug & Pharmaceutical, Resins, Flavors Fragrances, Other Chemicals & Co-Products Manufacturing Unit EC No. F.NO. J-11011|108|2015-IA-II(I) dated August 03, 2021 Report period – April 2022 to September 2022

Sr.	Condition	Compliance	<u> </u>						
No									
	cific conditions:	_							
(i)	The effluent quantity to be discharged shall be within the prescribed limit as per the existing CRZ clearance and any	Complied. The effluent quantity to be discharged is well within the prescribed limit of 20514 KLD as per the existing CRZ clearance only. The average wastewater generation for the report period is 9236 m³/day m³/day only which is well within the limit. Detail break up is given in below table:							
	increase in the	Wastewater		May	June	July	August	September	
	effluent load or changes in pipeline	generation m ³	2022	2022	2022	2022	2022	2022	
	attracts the provisions of the CRZ	Month wise	284435	295770	251593	282500	289550	286594	
	clearance.	Per day	9481	9541	8386	9113	9340	9553	
		The maximum values during the compliance period confirms that at no time the wastewater generation went beyond the stipulated value. Summary is given below: Wastewater Stipulated Values for the period						ulated value.	
		generation		valu	e	April 2022 – September 20 Min. Max. Avg.			
		Wastewate generation		2051	14	8386	9553	9236	
(ii)	No banned pesticides/chemicals shall be manufactured by the project proponent. No banned raw material shall be used in the unit. The project proponent shall adhere to the notifications/guidelin es of the Government in this regard.	Complied. No banned raw materio	pesticide	es/chemico	als is mo	nufactured	nor is ar	ny banned	
(iii)	The company shall comply with all the environmental	Complied. All the envi		ıl protecti	on meas	ures and s	afeguards 	proposed	

protection measures safeguards and proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP Respect environmental management, and mitigation risk measures relating to the project shall be implemented.

Sr No.	Potential impact	Action to be followed	for	Frequency of monitoring	Status of Compliance
1	Air Emission	Adequate stack height APCM-Multi Cyclone & Scrubber is provided as APCM AAQ within the project premises and nearby habitations to be monitored. All vehicles to be PUC certificate	SPM, RSPM, SO2 and NOx, Vehicle logs to be maintained.	Monthly through external agency NABL Approved	Stack and APCM details are provided in EC Compliance Point No.4 of Conditions. Quality of gaseous emission and AAQ
2	Noise	Noise generating from operation of boiler, cooling towers &plant & M/c area to be monitored.	Spot noise level Recording	Monthly through NABL Approved external agency	Carried out at the periphery of whole plant premises
3	Waste Water Discharge	Compliance to the wastewater discharge standards complete effluent treatment Plant- Primary + Secondary & MEE, ZLD is achieved	pH, TSS, TDS, COD, BOD, Oil & Grease	Monthly through NABL Approved external agency	Discharge effluent is analyzed on daily basis.

		4	Solid/	Check	Quantity	Periodicall	Details are
		4	-				
			Hazardous	compliance	and quality	У	provided in
			Waste	of HWM	monitoring		EC
				rules			compliance
							point No.10
							of specific
							conditions
		5	Non routine	Plant	Mock drills	Periodic	Every year
			events and	drawn,	and records	during	4nos. mock
			accidental	considering	of the same.	process	drills carried
			release	likely		activities	out in the
				emergencie			premise on
				s and steps			rotational
				required to			basis
				prevent/limi			covering all
				t			plants.
				consequenc			'
				es.			
		6	Green Belts	Vegetation,	More than	Once a	Green belt
				green belt	50,000	year	area is about
				developme	Trees /Year	,	36% land
				nt			area.
							Total area:
							1126078.27
							sq.mt
							Green
							belt area:
							409030.00
							sq.mt
(iv) The	treated effluent C	^omi	plied.				34.116
of			•	nt is meeting wi	ith standards s	tipulated by s	state pollution

20514 KLD proposed to discharge to the estuary of Par river through pipeline, shall conform to the standards prescribed under the Environment (protection) Act, 1986. The project proponent shall explore possibilities for recycling and reusing of treated water in the unit to reduce the fresh water demand and waste disposal.

The treated effluent is meeting with standards stipulated by state pollution control board's discharge norms and values of various parameters of treated effluent is given in **Table 1**.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

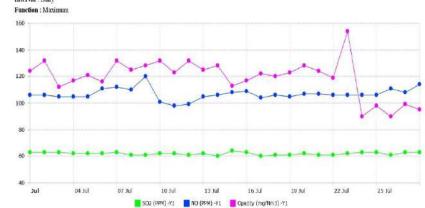
S	Parameter	Limit	Values for t	•	
No.		Mg/l	April 2022 -	- Septemb	er 2022
			Min.	Max.	Avg.
1	рН	5.5 to 9.0	7.3	7.9	7.5
2	Temperature	40 °C	30.1	30.9	30.4
3	Colour (pt. co. scale)in		40.0	70.0	55.0
	units				
4	Suspended solids	100	31.0	58.0	46.1
5	Oil and Grease	10	2.9	5.2	4.1
6	Phenolic Compounds	5	0.7	1.0	0.8
7	Cyanides	0.2	ND	ND	ND

		8	Fluorides	2	0.7	1.1	0.8
		9	Sulphides	2	0.5	1.6	0.9
		10	Ammonical Nitrogen	50	7.2	14.8	9.8
		11	Arminorical Nitrogen	0.2	ND	ND	ND
			Total Chromium	2			
		12		ļ	0.1	0.1	0.1
		13	Hexavelent Chromium	1	ND	ND	ND
		14	Copper	3	0.3	0.2	0.1
		15	Lead	2	ND	ND	ND
		16	Mercury	0.01	ND 0.1	ND 0.1	ND 0.1
		17 18	Nickel Zinc	15	0.1	0.1	0.1
		19	Cadmium	5	ND	ND	ND
		20	Phosphate		1.8	3.8	2.2
		21	BOD (3 days at 27°C)	100	42.0	58.0	49.5
		22	COD Insecticide/Pesticide	250	208.0	244.0	224.1
		23		Absent 26	Absent 6.1	Absent 24.4	Absent 11.2
			Sodium Absorption Ratio				
		25	Manganese	2	0.1	0.9	0.2
		26	Tin	0.1	ND	ND	ND
		27	Bio Assay Test	90%	100%	100%	100%
				survival of fish after 96 hrs. in 100% effluent %	survival of fish after 96 hrs. in 100% effluent	survival of fish after 96 hrs. in 100% effluent	surviva I of fish after 96 hrs. in 100% effluent
(v)	Continuous online (24x7) monitoring system for stack emission shall be installed for the measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB servers For online continuous monitoring of effluent, the unit shall install web camera with night vision	emis and conn	plied. Continuous online sion shall be installed for the pollutants concentratected to GPCB and CPCE ability and flow meters in E	the measuration as per 3 website. W	rement of flu · CPCB guid Veb camera v	e gas disc elines and	charge d also

capability and flow meters in the channel/drain carrying effluent within the premises.

B/1/22, 9:17 AM about:blank

Enviro Connect


Historical Data

LOGO

Plant Name : ATUL LTD-VALSAD

Plant Address: ATUL LTD, VALSAD (GUJARAT)

Station Name : PH EAST 3 From Date: 01-07-2022 00:00:00 To Date : 31-07-2022 09:17:00 Interval : Daily

 $\label{eq:Legends} \textbf{Legends}: < - \text{Average with less data, } \mathbf{C} - \text{Calibration mode, } \mathbf{M} - \text{Maintenance mode, } \mathbf{S} - \text{Data under scrutiny, } \mathbf{B} - \text{Bad data, } \mathbf{H} - \text{High limit crossed, } \mathbf{L} - \text{Low permissible limit crossed}$

Parameter	SO2	NO	Opacity
Unit	PPM	PPM	mg/Nm3
Unit Limit	0 - 1500	0 - 1000	0 - 300
01-07-2022 00:00:00	63	106	124
02-07-2022 00:00:00	63	106	132

about blank

22, 9:17 AM		estropul: Intentis	
03-07-2022 00:00:00	63	[105]	112
04-07-2022 00:00:00	62	105	117
05-07-2022 00:00:00	62	105	121
06-07-2022 00:00:00	62	111	116
07-07-2022 00:00:00	63	112	132
08-07-2022 00:00:00	61	110	125
09-07-2022 00:00:00	61	120	128
10-07-2022 00:00:00	62	101	132
11-07-2022 00:00:00	62	98	123
12-07-2022 00:00:00	61	99	132
13-07-2022 00:00:00	62	105	125
14-07-2022 00:00:00	60	106	128
15-07-2022 00:00:00	64	108	113
16-07-2022 00:00:00	63	109	117
17-07-2022 00:00:00	60	104	122
18-07-2022 00:00:00	61	106	120
19-07-2022 00:00:00	61	105	123
20-07-2022 00:00:00	62	107	128
21-07-2022 00:00:00	61	107	124
22-07-2022 00:00:00	61	106	119
23-07-2022 00:00:00	62	106	154
24-07-2022 00:00:00	63	106	90
25-07-2022 00:00:00	63	106	98
26-07-2022 00:00:00	61	111	90
27-07-2022 00:00:00	63	108	99
28-07-2022 00:00:00	63	114	95

(∨i) The storage of toxic/hazardous raw material shall be bare minimum respect to their quantity and inventory. Quantity and day of storage shall be submitted to the Regional Office of Ministry and SPCB along with the compliance report.

Complied. The storage of toxic/hazardous raw material is bare minimum with respect to their quantity and inventory. Storage details of few major hazardous chemicals are as under:

Sr	Name of RM	Nos	Capacity	Control Measures Provided
No.		of tank		
1	65% Oleum	2	65 MT	Dyke wall with valve, do not allow the spill to mix with water, vent with Acid seal, spare storage tank for emergency transfer, Dry sand beds for spill Control, tank level meter
2	Chlorine	4	200	Two standby tank, DCS controlling, Hypo scrubbing, SCBA, Emergency chlorine kit & hood blower etc.
3	Epichloro- hydrin	6	55 M ³	Flame arrester earthing, dyke wall with valve which do not allow liquid spill to go to normal drain.
4	Sulphur Trioxide (Group 2)	2	13 MT	Dyke wall with valve, with valve do not allow the spill to mix with water, vent with Acid seal, spare storage tank for emergency transfer
5	Ammonia Anhydrous	1	10	High Alarm switch Water sprinkler, Fog Nozzles, Dyke wall
6	65% Oleum	2	72	Respirators, Dry Sand, Dyke wall, Spare tank, High alarm switch
7	Caustic	4	530 MT	Dyke wall, LI & LT, DCS controlling etc.
8	Hydrogen	1	100 nm ³	Prohibited for men & vehicle movement, Isolated storage, FLP, Flam arrester, PG & PT, Fire hydrant, 7 Fire extinguisher etc.
9	Chloro Sulphonic Acid	4	30	Respirators, Dry Sand, Dyke wall, spare tank

		10	Sulfuric acid	4	800	Emergency tank, Dyke wall, LT, DCS controlling, Level alarm etc.	
		11	Liq. SO₃	3	40 MT	Emergency tank, LT & LI, DCS controlling, Level alarm etc.	
		12	HCI	3	200 KL	Dyke wall, LI & LT, DCS controlling etc.	
(vii)	Occupational health	Complied. Being done on regular basis as per the Eactories Act & rules					

surveillance of the workers health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.

Being aone on regular basis as per the Factories Act & rules.

Occupational health surveillance of the workers is carried out on a regular basis as per section-41 C of the factories act and ruke-68T of Gujarat Factories Rules and records are maintained. Regular medical check-up of all employees are done by in-house doctors.

The following medical check-up has been carried out during report period:

Medical Check-Up:

Sr No.	Employee	Nos. during report period
1	Staff	1175
2	Operators	
3	Workers	

Various types of tests being performed are as below;

- 1. Pre-employment check-up:
- 1. Vision
- 2. Colour blindness
- 3. CBC
- 4. Urine
- 5. Height
- 6. Weight
- 7. B/P
- 8. Pulse
- 9. Habit
- 10. Personal History
- 11. Family History
- 12. Identification k
- 2. Annual Check-up:
- 1. Physical check-up
- 2. Vision
- 3. Blood
- 4. Urine
- 5. PFT

6. ECG

Our occupational health centre & Pathology Lab is equipped with necessary facilities under supervision of factory medical officer with trained three EHS persons.

Medical Facilities:

- First Aid boxes in all plants
- Central Ambulance Room in the middle of the factory
- Two Ambulance Vans. Out of which one is equipped with ICU facilities.
- Medical Center
- □ Three full time AFIH certified doctors.
- Equipped with 3Beds
- Full equipped Pathological lab with advanced diagnostic equipment
- ECG Equipment
- Cardiac monitor
- Defibrillator
- □ Finger pulse Oxy meter
- Pulmonary Function Test Apparatus
- 02Administration
- □ Antidotes with routine Important and Vital lifesaving Drugs Tie-up with Kasturba Hospital, Valsad, and Pardi Hospital, Pardi, respectively 7 kms and 3 kms away from Atul

We also have tie up with external two hospitals (Pardi Hospital and Kasturba Hospital). We have medical check-up schedule once in quarter for Insecticide plant's employees Other necessary items including First-aid medicines, antidotes and equipment as prescribed in the schedule the under Rule-68 U (b) of the Gujarat factories rules are also been provided.

(viii) Training shall be imparted to all employees on safety and health aspects of chemical handling. Safety and visual reality training shall also be provided to

Complied.

Company is providing training which cover all relevant workplace policies, procedures and practices to ensure that staff have the appropriate skills and knowledge to perform their work safety and according to the legislative requirements and the departments and work place procedures.

All employees and others have a duty to comply with instructions given for workplace health and safety.

	employees.	 Employee training which generally include: First aid training Firefighting training – Use of Fire Hydrant /Extinguisher Handling of Compressed Gas Cylinder Work Permit System, Use of Spill Kit Handling of Solvents Operation of ETP &MEE Handling of Hazardous waste Handling of Biomedical waste Scrap yard management 111 – A training as per factory Act General instruction training; e.g. workplace communication processes, incident reporting, lock down, evacuation and medical emergency procedures, mock drill. Job-specific training e.g. safe work procedures for the use of equipment, SOP of manufacturing process & safety and health aspect of chemical handling. Conducted OSHAS & EMS Programme. Hygiene, Stress management & skill development.
1	I .	

We have regularly arrange safety training programme for our employees in every month

Photograph of safety training

(ix)The unit shall make arrangement for the prevention and protection of possible fire hazards during manufacturing process in material handling . Firefighting system shall be as per the norms. Action plan proposed shall be implemented in letter and spirit.

Complied.

A well designed Fire hydrant system is adequate and as per standards.

Fire hydrant Network details:

- Four full fledged fire hydrant system in the company Water Storage Capacity - 50 million Liters
- Total length of hydrant line 15 km
- Fire Fighting Equipment
 - o DCP1350 o CO₂776 Foam : 05Trolly
- Fire Tenders
 - o One fire tender having 1800 Lit water capacity
 - Second multipurpose fire tenders having 5000 Lit water &500Foam
 - Third Multipurpose tender having facility of DCP 500
 Ka, Foam 500 lit and Water 4500 Lit.
- SCBA sets 35nos.
- Emergency alarm system 532 nos. points spread across the company.
- Fire station manned round the clock with Siren and Annunciation System.
- Regular Testing on every Monday.

- Smoke detectors in the office and labs.
- Auto water deluging system at critical reactors.
- Auto water sprinkler system at tank farms.

- (x) Solvent management shall be carried out as follows:
 - (a) Reactor shall be connected to chilled brine condenser system.

Complied.

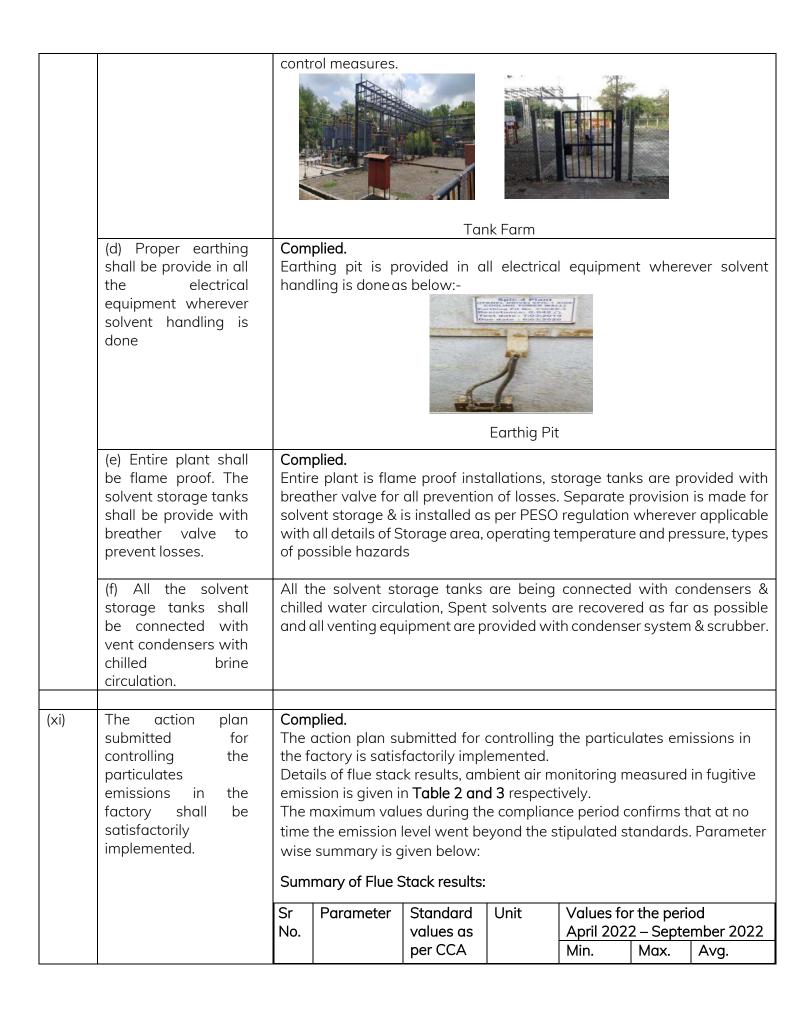
Condensers with chilling systems are provided at point of Solvent recovery to minimized vapour loss as shown below:-

Condenser at Solvent recovery

(b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages.

Complied.

We have provided seals at all Reactors and pump's in order to prevent leakage as shown below:-


Seal at Stirrer

Pump Seal

(c) Solvents shall be stored in a separate space specified with all safety measures

Complied.

We have made separate provision for solvent storage & is installed as per PESO regulation wherever applicable with all details of Storage area, operating temperature and pressure, types of possible hazards and

1	PM	100	mg/Nm³	39.6	64.2	52.5
2	PM	50	mg/Nm³			
	(New Boiler			26.8	43.6	36.4
	50 TPH)					
3	SO2	600	mg/Nm ³	264.0	578.0	309.8
4	NOx	600	mg/Nm³	258.0	580.0	306.2
5	NOx	300	mg/Nm³	218.0	284.0	264.0
	(New Boiler)			210.0	204.0	204.0

Summary of Ambient Air Quality results:

Station	Parameter	Limit micro - gm/NM ³	Values for the period April 2022 – September 2022		
			Min.	Max.	Avg.
66 KV	PM2.5	60	29.0	34.0	31.8
	PM10	100	45.0	54.0	50.2
	SO ₂	80	13.7	22.6	18.3
	NO ₂	80	24.7	27.9	26.1
	Ammonia	400	ND	ND	ND
	HCI	200	4.1	6.5	5.3
Opposite	PM2.5	60	10.3	32.8	22.2
Shed D	PM10	100	15.2	54.8	39.0
	SO ₂	80	10.1	19.8	14.7
	NO ₂	80	12.7	25.6	18.2
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
West site ETP	PM2.5	60	26.0	36.0	31.5
	PM10	100	39.0	59.0	51.8
	SO ₂	80	11.6	23.7	19.9
	NO ₂	80	24.9	27.1	26.2
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
North site ETP	PM2.5	60	28.0	34.0	30.8
	PM10	100	42.0	58.0	51.7
	SO ₂	80	15.3	20.6	18.0
	NO ₂	80	17.3	31.2	26.1
	Ammonia	400	3.4	4.6	4.1
	HCI	200	ND	ND	ND
TSDF	PM2.5	60	27.0	35.0	31.3
	PM10	100	38.0	54.0	49.3
	SO ₂	80	12.0	18.5	16.1
	NO ₂	80	22.8	28.4	26.0
	Ammonia	400	2.6	3.9	3.2
	HCI	200	ND	ND	ND

		Main Guest	PM2.5	60	14.6	34.8	23.4
		House	PM10	100	37.6	54.8	45.2
			SO ₂	80	9.8	20.4	15.1
			NO ₂	80	12.4	29.3	18.4
			Ammonia	400	ND	ND	ND
			HCI	200	ND	ND	ND
		Wyeth Colony	PM2.5	60	25.0	32.0	29.3
			PM10	100	36.0	57.0	49.3
			SO ₂	80	14.1	20.7	18.1
			NO ₂	80	24.1	30.4	27.7
			Ammonia	400	ND	ND	ND
			HCI	200	ND	ND	ND
		Gram	PM2.5	60	14.3	34.6	24.1
		panchayat	PM10	100	31.9	52.6	41.6
		hall	SO ₂	80	7.6	21.9	13.1
			NO ₂	80	11.7	25.9	19.1
			Ammonia	400	ND	ND	ND
			HCI	200	ND	ND	ND
		Main office,	PM2.5	60	11.4	35.6	22.9
		North site	PM10	100	37.9	52.0	45.1
			SO ₂	80	8.9	21.3	14.0
			NO ₂	80	11.3	25.2	18.7
			Ammonia	400	ND	ND	ND
			HCI	200	ND	ND	ND
		Haria water	PM2.5	60	12.5	31.5	21.7
		tank	PM10	100	37.3	55.3	45.5
			SO ₂	80	10.6	19.7	14.3
			NO ₂	80	11.8	25.3	18.7
			Ammonia	400	ND	ND	ND
			HCI	200	ND	ND	ND
(×ii)	Volatile organic compound (VOCs)/Fugitive emission shall be controlled up to 99.99% with effective chillers/modern technology.	Complied. All the VOCs/ Fu in secondary con	•			illed brine s	solution

(xiii)	Total	fresh	ı v	vater
	require	ement	,	
	propos	sed to	be	met
	from	Par Ri	iver	shall
	not e	exceed	1 18	3050
	cum/d	ay.		Prior
	permis	ssion	in	this
	regard	d sh	nall	be
	obtain	ied fi	rom	the
	conce	rned		
	regula	tory a	utho	rity.

Complied.

The average water consumption for the report period is Avg. **10090 KL/day** only, which is well within the limit. Detail of Fresh water consumption break up is given in below table:

Sr No.	Month	Quantity (KL/Month)	Avg. Quantity (KL/Day)
1	April - 2022	312080	10403
2	May -2022	327483	10564
3	June - 2022	273471	9116
4	July - 2022	307531	9920
5	August - 2022	314729	10153
6	September - 2022	311515	10384

(xiv)

Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premise harvested and waster shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ Any waste water shall not be allowed to mix with storm water.

Complied.

Company has expanded its harvesting pond capacity to 14000 KL capacity pond to harvest rain water

We are creating facility/ capacity to cater our consumption with rain harvested water with zero river drawls of water during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water.

We also construct temporary sand bag dam on top of dam towards the end of monsoon to store additional free flowing rain water in river Par. In addition to above, surface runoff water and roof top water is used to recharge bore wells.

No Process effluent/ Any waste water mix with storm water.

Total No. of Pond: 2 Nos.

Capacity of Pond: (1 Nos. x 12000 KL) & (1 Nos. x 2000 KL)

Company has harvest 468355 KL rain water during 2022

Water Harvesting
Project at Colony

Water Harvesting Project near Coconut Circle

/ \	The second second	Committeed		_
(xv) The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste (b) Reuse of byproducts from the process as raw material or as raw material substitutes in other processes.		Complied. All the liquid ingredients are being charged through measure vessels and/or flow meters to control on quantity as per the stoichiometry. All the solid ingredients are charged after proper weighment only. All these meters and weighing machines are calibrated and records are maintained.		
		Sodium sulfate, sodium thio sulphate, brine copper hydroxide, spent acid, etc. are few which are being sold for using the same substitute to raw materials. Also, fly ash raw material for brick manufacturing. Sod sulfide, etc. are being used as raw material Automated filling system for our agro pro	by - products from e either as raw mand gypsum are b lium hypochlorite, s al in other processe ducts, polymers, re	m the process naterial or as being used as sodium hydro es.
	(c) Use of automated filling to minimize	dyes for small and bulk packing is provide Chemicals and solvents are handled in clos	·	
	spillage. (d) Use of Close Feed	lines only.	se nanaling system	i tillough pipe
system into batch reactors. (e) Venting equipment through vapor recovery		All the reactors are equipped with vents/stacks, which are connected to either vapor recovery system consisting of condensers, ejector/vacuum pumps and/or scrubbers. Genoscorb technology for solvent vapor recovery is also installed and working perfectly.		
	system (f) Use of high- pressure hoses for equipment clearing to reduce waste water generation.	Many equipment like reactors, spray dryers, condenser wherever necessary are being cleaned with high pressure sprayer / jet to reduce waste water generation.		
(xvi)	The greenbelt of at least 5-10 m width shall be developed/strengthe ned over nearly 33% of the total project area, mainly along	Complied. Company has already developed more to complex Total Industrial Plot area: 1126078.27 sq. Green belt area: 409030.00 sq.mt (approximately 39850 trees period at different location given in below	mt c. 36% of total plot of difference spe	area)
	the plant	Location Nos. of trees		
	periphery/adjacent	Near river bank Ghat	21350	1
	areas. Selection of plant species shall be	Parnera Hill, Chichwada road	7300	1
	as per the CPCB	Hill side colony 5 & Outside area	2000	1
	guidelines in	Secure landfill site Yard	9200	1
	consultation with the	Total	39850	1
	State Forest Department Records of tree canopy shall be monitored through remote sensing. Tress have to be planted		,	

	with spacing of 2m x 2m and number of trees has to be increases accordingly. The Plant species can be selected that will give better carbon sequestration. The action plan proposed in this regard shall be implemented.	
(xvii)	As proposed the project proponent shall undertake plantation activities (10,000 plant) in the Parnera hill and other areas with the support of State Forest Department /Village Administration.	We have Planted approximately 7300 trees at Parnera hill. Remaining 2700 trees will be planted soon. Photograph of plantation
(xviii)	As committed, at least Rs 5 lakhs shall be allocated for conservation of Schedule species. The implementation report shall be submitted to the IRO, MoEFCC,	Our conservation plan is under approval and we will implement the same as per the final approval.

Atul Lte

Utilities and Services
Atul 396 020, Gujarat, India
services@atul.co.in | www.atul.co.in
(+91 2632) 230000 | 233261

Ref:Atul/ Conservation Plan

Date: 07/12/2019

To

Chief Conservator of Forest

District Valsad

Sub: Approval of Conservation Plan for Wildlife and Environment Protection for Expansion of Existing Production Plant and Addition of New Products at Po. Atul, Valsad District, Gujarat State by Atul Ltd

Respected Sir,

With reference to above mentioned subject, we would like to inform you that with regards to our project appraisal at MoEF &CC, we have to prepare the Conservation plan and get it approved by Chief Conservator of Forest of State Government, Forest Department with necessary budget allocation. We are submitting the same to your good office for perusal of the conservation plan with respect to our expansion project.

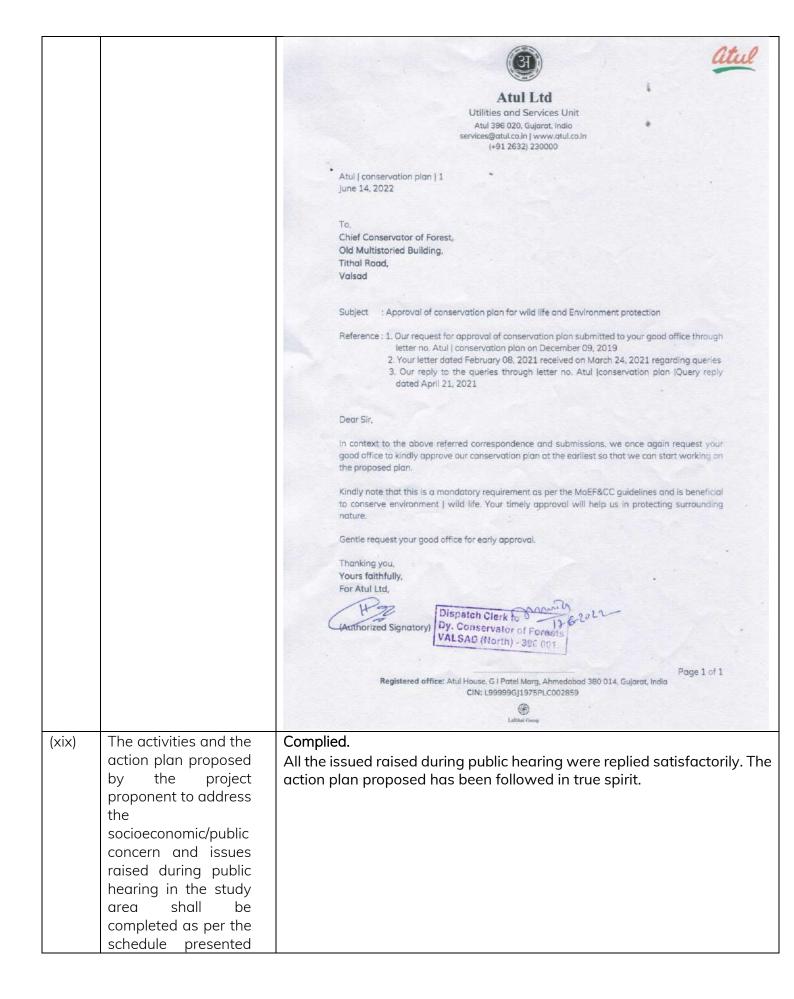
We request you to kindly approve the Conservation plan with allotted budget.

Thanking You,

Yours Sincerely

For Atul Ltd,

(Authorized Signatory)


Dispatch Clerk to

Dy. Conservator of Forests VALSAD (North) - 396 001.

Registered office: Atul House, G I Patel Marg, Ahmedabad 380 014, Gujarat, India CIN: L99999GJ1975PLC002859

Lalbhai Gros

Management Cell (having qualified management and monitoring functions. Apart from this, one Environment		_	
Environmental Management Cell (having qualified persons with Environmental science/Environment al Engineering/specializ ation in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Science/Environment al Engineering/specializ ation in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the		and as described in the EMP report in	
Management and Monitoring Functions.	(xx)	Environmental Management Cell (having qualified persons with Environmental science/Environment al Engineering/specializ ation in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and	Company is having separate Environmental Management Cell equipped with full - fledged laboratory facility to carry out the environment management and monitoring functions. Apart from this, one Environment Research Lab is also established for research work for the study of various aspects related to environment and its remedial measures. Company has developed a separate laboratory equipped with equipment such as pH meter, TDS meter, COD meter, Glass ware, gas chromatography system, and oven, muffle furnace, etc. to carry out testing of routine parameters. However sampling and testing is carried out by GPCB approved and company appointed consultant also. Currently the parameters measured in - house are pH, COD, TDS, MLVSS and MLSS.

B. General conditions: The grant of environmental clearance is further subject to compliance of other general condition as under:

(i) No further expansion or modification in the plant, other than mentioned in the EIA 2006 Notification, and its amendments, shall be carried out without prior approval of the Ministry of Environment, Forest and Climate Change/SEIAA applicable. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry/ SEIAA, as applicable, to assess the adequacy of conditions imposed

Noted.

We ensure that there is no further expansion or modifications related to EC in the plant. For any deviations or alteration in the plant we will opt prior permission from MoEF.

and to add additional environmental protection measures required, if any. (ii) The Project Complied.	
protection measures required, if any.	
required, if any.	
Till Tille Tillgect F Complied.	
	MCILIC mula 1000 ma
ameriaea in Secondi, 1991 and January, 2000 and	
f and handling system, Onsite emergency plan, Licer	nses, reporting, etc.
guidelines issued under the Canadia and Canadia	
L Conditions L Compile	ance
Manufacture, Storage and Import of 4. Responsibilities of the occupier for management of	of hazardous and other
and Import of wastes.	
Chemicals (MSIHC) (1) For the Complied.	
Rules, 1989, as management of	
amended time to hazardous and other We are using advance	ced technology and
time, the chemical wastes, an occupier processes to minimization	n of waste generation
shall follow the for prevention, reuse, recy	•
(Emergency Planing, following steps, CLIVALE facility)	ser TSDF
1000 and the sade of	
and Other Wastes	
(Management and	
Trans-Boundary • Recycling;	
Movement) Rules, • Recovery,	
2016 and other rules utilization	
notified under various including co-	
Acts. processing;	
• Safe disposal.	
2) The occupier Complied.	
shall be	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e and environmentally
sound management of	
Suite and wastes	
environmentally	
sound	
management of	
hazardous and	
other wastes.	
(3) The hazardous Complied.	
and other wastes	
generated in the We have our own captive	e TSDF and Incinerator
establishment of an facility.	
occupier shall be	
sent or sold to an	
authorized actual	
user or shall be	
disposed of in an	

authorized disposal facility.	
(4) The hazardous and other wastes	Noted & Complied.
shall be transported from an occupier's establishment to an	
authorized actual	
user or to an authorized disposal facility in	
accordance with the provisions of these	
rules.	Complied
(5) The occupier who intends to get its hazardous and	Complied. We are having separate hazardous waste
other wastes treated and disposed of by the operator of a	storage facility with all safety measures to avoid accident. Also we are adopting safe disposal and storage practices.
treatment, storage and disposal facility shall give to the	
operator of that facility, such specific	
information as may be needed for safe storage and	
disposal.	
(6) The occupier shall take all the	Complied
steps while managing hazardous and other	
waste to-	
contaminants and prevent accidents	
and limit their consequences on	
human beings and the environment; and Provide persons	
working in the site with appropriate	
training, equipment	

and the information	
necessary to ensure	
their safety.	
	Complied
、 ,	Complied.
authorization for	We are strictly agreeing, complying & will
managing hazardous	, , , , ,
and other wastes.	continue to comply with all the stipulations
	made by GPCB as per latest CC&A no. AWH
	105110 valid till September 30, 2025.
	·
(7) Power to suspend	Not Applicable.
or cancel an	
authorization.	
(8) Storage of	Complied.
hazardous and other	- Compiledi
wastes.	
	Complied
(9) Utilization of	Complied.
hazardous and other	Recovered spent solvent are being reused. Used
wastes.	
	oil & discarded drums are being sent to authorize
	recycler.
(10)Standard	Noted.
Operating Procedure	
or guidelines for actual	
users.	
(11) Import and export	Not Applicable.
(transboundary	, tett ippnedicte
movement) of	
,	
hazardous and other	
wastes.	
(12) Strategy for	Not Applicable.
Import and export of	
hazardous and other	
wastes.	
(13) Procedure for	Not Applicable.
import of hazardous	
and other wastes.	
	Not Applicable
(14) Procedure for	Not Applicable.
Export of hazardous	
and other wastes from	
India.	
(15) Illegal traffic.	Not Applicable.
(16) Treatment,	Complied.
storage and disposal	· · · · · · · · ·
facility for hazardous	We have our own captive TSDF and Incinerator.
and other wastes.	We also send waste to authorized facility as per
	the valid authorization.
(17) Packaging and	Complied.
labelling – Form 8.	All hazardous waste transportation is being
	done through appropriate packing and labelling
	done unough appropriate packing and labelling

	as per Form-8.
(18) Transportation of	Complied.
hazardous and other	Waste is being transported through TREM Card
wastes.	as per Hazardous waste rules.
	'
(10) Marriford avadage	Compliad
(19) Manifest system	Complied. We are sending waste through online manifest
(Movement Document) for hazardous and	system of GPCB XGN.
other waste to be used	system of all CD Adiv.
within the country only.	
within the country only.	
(20) Records and	Complied.
returns.	We are maintaining & submitting all records like
	Form-3, Form-4 & environment statement Form-
	V periodically to GPCB.
(21) Responsibility	Noted
of authorities	
The authority specified	
in column (2) of	
Schedule VII shall	
perform the duties as	
specified in column (3)	
of the said Schedule	
subject to the	
provisions of these	
rules.	
(22) Accident	Noted.
reporting. Where an	No goodents were reported during report period
accident occurs at	No accidents were reported during report period
the facility of the	during handling and transportation of hazardous
occupier handling	or other wastes.
hazardous or other	
wastes and operator	
of the disposal	
facility or during	
transportation, the	
occupier or the	
operator or the	
'	
'	
immediately intimate	
the State Pollution	
Control Board	
through telephone,	
e-mail about the	
accident and	
subsequently send a	

report in Form 1.
(23) Liability of occupier, importer or exporter and operator of a disposa facility.
(a) The occupier, importer or exporter and operator of the disposal facility shall be liable for all damages caused to the environment or third party due to improper handling and management of the hazardous and other waste.
(b) The occupier and the operator of the disposal facility shall be liable to pay financial penalties as levied for any violation of the provisions under these rules by the State Pollution Control Board with the prior approval of the Central Pollution Control Board. (24) Appeal
(a) Any person aggrieved by an order of suspension or cancellation or refusal of authorization or its renewal passed by the State Pollution Control Board may, within a period of thirty days from the date on which the order is communicated to him, prefer an appeal in Form 12 to the Appellate Authority,

	ambient noise levels shall conform to the	Sr Location	Permissible Values for the period			
(iv)	levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. On all sources of noise generation. The	Complied. In built acoustic enclosure, silencer and insulation are provided on all source of noise generation to keep over all noise level within the stipulated standards like turbine, DG set, etc. The ambient noise level confirm to the standard prescribed under EPA. The same is being regularly monitored and its details are given in Table 4 and 5. The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards Summary is given below: Noise level monitoring data (Day Time):				
(iii)	The energy source for lighting purpose shall be preferably LED based, or advanced having preference in energy conservation and environment betterment. The overall noise	·	conventional lights by LED lights.			
		namely, the Environment Secretary of the State. (b) The Appellate Authority may entertain the appeal after expiry of the said period of thirty days, if it is satisfied that the appellant was prevented by sufficient cause from filing the appeal in time. (c) Every appeal filed under this rule shall be disposed of within a period of sixty days from the date of its filing.				

(Protec		Act	
Rules,	1989	viz	. 75
dBA (c	lay tir	ne)	and
70 dBA	(nigh	t tim	ne).

		75	Min.	Max.	Avg.
1	66KVA substation	75	62.7	67.9	65.6
2	Opposite shed D	75	62.8	69.4	66.1
3	ETP West site	75	64.7	70.2	67.2
4	ETP North site	75	64.3	69.2	67.3
5	Near TSDF	75	54.3	59.2	57.2
6	Near Main guest house	75	60.3	68.6	65.5
7	At Wyeth Colony	75	56.8	62.5	59.7
8	Gram Panchayat Hall	75	61.5	69.5	64.3
9	Near Main Office North	75	55.9	60.0	58.1
	site				
10	Haria Water tank	75	64.0	67.4	65.9

Noise level monitoring data (Night Time):

Sr	Location	Permissible	Values for the period			
No.		Limits, dBA	April 2022 – September 203			
			Min.	Max.	Avg.	
1	66KVA substation	70	50.7	54.0	52.4	
2	Opposite shed D	70	52.7	55.1	53.8	
3	ETP West site	70	51.2	55.3	53.4	
4	ETP North site	70	53.2	60.7	56.2	
5	Near TSDF	70	45.8	51.9	49.9	
6	Near Main guest house	70	50.1	56.5	53.2	
7	At Wyeth Colony	70	48.9	55.9	52.6	
8	Gram Panchayat Hall	70	49.8	53.8	52.1	
9	Near Main Office North site	70	49.5	56.7	53.2	
10	Haria Water tank	70	50.7	53.4	52.2	

The company shall (v) undertake all relevant for measures improving the socioeconomic conditions of the surrounding area. The activities shall be undertaken by involving local villages and administration. The company shall undertake Ecodevelopmental

Complied.

Company is doing CSR activities for up gradation of surrounding area and well fare of nearby localities. List of CSR activities is given in **Table 6**.

	measures including community welfare measures in the project area for the overall improvement of the environment			
(∨i)	The company shall earmark sufficient funds towards capital cost and recurring cost per annum to implement the conditions stipulated	with all th	cost: A separate budget is ne legal requirement stipu	being allocated every year to comply lated by SPCB, CPCB & MoEF apart tems and facilities. Total expenditure v table.
	by the Ministry of Environment, Forest and Climate Change	Sr No.	Parameter	Recurring Cost (Rs. In lacs) For the report period April 2022- September 2022
	as well as the State Government along	1 2	Air Pollution Control Liquid Pollution Control	2460
	with the implementation schedule for all the	mplementation Schedule for all the 3 Environm Monitorin	Environmental Monitoring and Management	19
	herein. The funds so	4	Solid waste Disposal	126
	earmarked for	5	Occupational health	15
	environment	6	Green belt	15
	management / pollution control	Total		2635
	measures shall not be diverted for any other purpose.			

(∨ii) Α copy of the clearance letter shall be sent by the project proponent concerned Panchayat, Zilla Parishad/Municipal Corporation, Urban local Body and the local NGO, if any, from whom suggestions/ representations, if any, were received while processing the proposal.

Complied.

(viii) The project proponent shall also submit six monthly reports on the status of compliance of the stipulated Environmental Clearance conditions including results of monitored data to the respective Regional Office of MoEF&CC, the respective Zonal Office of CPCB and

Complied.

This is our first six monthly EC compliance report after receiving EC and we will regularly submit the same.

	SPCB. A copy of Environmental Clearance and six	
	monthly compliance	
	status report shall be	
	posted on the	
	website of the	
	company.	
(ix)	The environmental	Complied.
	statement for each	The Environmental statement (Form-V) for each financial year ending
	financial year ending	31st March is being submitted to State Pollution Control Board (GPCB)
	31st March in Form-V	every year time to time on XGN portal as well as hard copy submission.
	as is mandated shall	Latest Form V for year 2021-22 is attached as Annexure 1 .
	be submitted to the	
	concerned State	
	Pollution Control	
	Board as prescribed under the	
	Environment	
	(Protection) Rules,	
	1986, as amended	
	subsequently, shall	
	also be put on the	
	website of the	
	company along with	
	the status of	
	compliance of	
	environmental	
	clearance conditions	
	and shall also be sent	
	to the respective	
	Regional Offices of	
	MoEF&CC by e-mail.	
(x)	The project	Complied.
	proponent shall	We have been accorded environmental clearance vide F. No. -11011
	inform the public the	108 2015-IA-II(I) dated, August 03, 2021 and accordingly we have
	project has been	published the advertisement of receiving EC in leading newspapers of
	accorded	region; 2 nos. in vernacular language (newspaper Gujarat Samachar
	environmental	dated August 07, 2021, Newspaper Sandesh dated August 07, 2021) and
	clearance by the	one in English (Times of India dated August 07, 2021). Thus we have
	ministry and copies of	published advertisement within stipulated time. The same has been
	the clearance letter	communicated to your good office vide our letter dated August 20, 2021
	are available with the	
	SPCB/Committee	
	and may also be seen	
	at Website of the	
	Ministry and at	
1		
	https://parivesh.nic.in.	
	https://parivesh.nic.in. This shall be advertised within	

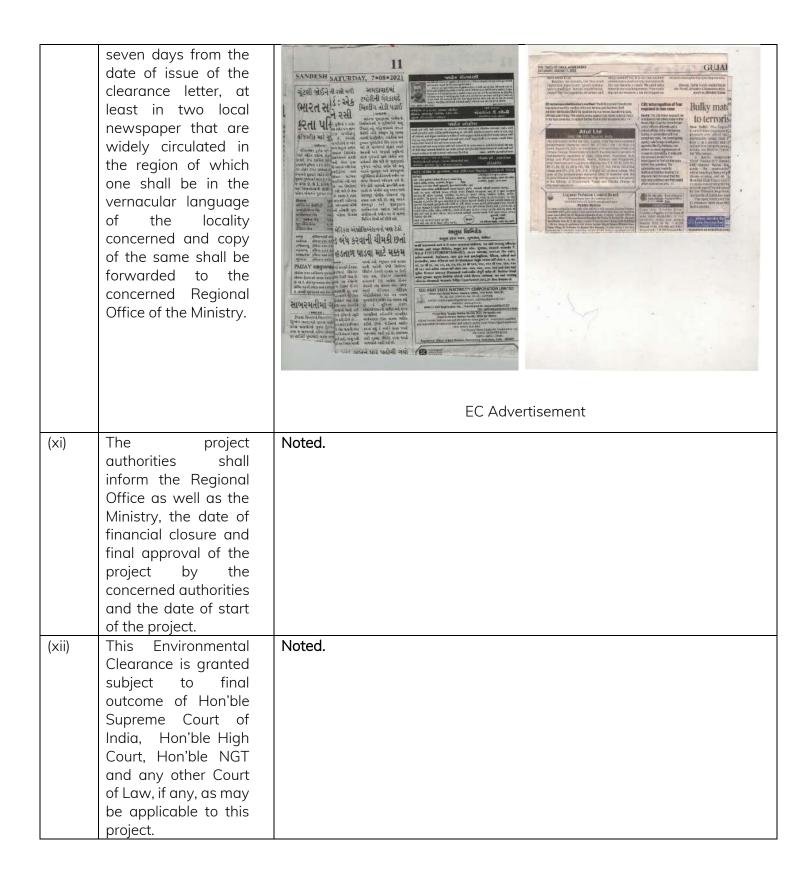


Table1: Quality of treated effluent

Sr No.	Parameter	Results	GPCB Limits					
INO.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Mg/l
1	рН	7.2	7.2	7.9	7.8	7.7	7.3	5.5 to 9.0
2	Temperature	30.3	30.3	30.1	30.3	30.9	30.5	40 °C
3	Colour (pt. co. scale)in units	50.0	40.0	60.0	50.0	60.0	70.0	
4	Suspended solids	58.0	31.0	47.0	37.0	48.0	56.0	100
5	Oil and Grease	4.6	3.8	2.9	3.9	5.2	4.4	10
6	Phenolic Compounds	0.9	1.0	0.8	0.7	0.9	0.7	5
7	Cyanides	ND	ND	ND	ND	ND	ND	0.2
8	Fluorides	0.6	0.9	1.1	0.9	0.8	0.7	2
9	Sulphides	0.5	0.8	0.7	0.8	1.2	1.6	2
10	Ammonical Nitrogen	7.1	14.8	8.1	11.3	9.6	7.9	50
11	Arsenic	ND	ND	ND	ND	ND	ND	0.2
12	Total Chromium	ND	ND	0.1	0.9	0.9	0.1	2
13	Hexavelent Chromium	ND	ND	ND	ND	ND	ND	1
14	Copper	0.1	0.3	0.1	0.2	0.2	0.1	3
15	Lead	ND	ND	ND	ND	ND	ND	2
16	Mercury	ND	ND	ND	ND	ND	ND	0.01
17	Nickel	ND	ND	0.1	0.1	0.1	0.1	5
18	Zinc	0.4	0.6	0.2	0.3	0.2	0.3	15
19	Cadmium	ND	ND	ND	ND	ND	ND	2
20	Phosphate	1.8	3.8	2.1	1.8	2.1	1.9	5
21	BOD (3 days at 27°C)	43.0	48.0	42.0	54.0	58.0	52.0	100
22	COD	216.0	236.0	208.0	231.0	244.0	210.0	250
23	Insecticide/Pesticide	Absent	Absent	Absent	Absent	Absent	Absent	Absent
24	Sodium Absorption Ratio	6.1	24.4	13.5	7.0	8.6	8.0	26
25	Manganese	0.1	0.9	0.1	0.1	0.1	0.1	2
26	Tin	ND	ND	ND	ND	ND	ND	0.1
27	Bio Assay Test	100% survival of fish after 96 hrs. in 100%	100% survival of fish after 96 hrs. in 100% effluent	90% survival of fish after 96 hrs. in 100% effluent %				
	Note: ND is Not [effluent Detected.	effluent	effluent	effluent	effluent	1	

Table 2 : Details of flue gas stack report

			D	etails of flu	ie aas stack	ć .			
No.	Stack Details	Paramenter	Permissible	Obtained	Obtained	Obtained	Obtained	Obtained	Obtained
	Constitution of the consti	Walker Committee	Limits	Value	Value	Value	Value	Value	Value
				1101000	// // // // // // // // // // // // //	10.00000	77110000	1 Addition of	- 50000000
			,	East					
1	FBC boiler El	PM	100 mg/Nm3	56.7	Not Running	Not Running	Not Running	52.4	Not Runnin
		SO ₂	600 mg/Nm3	291				284	
		302	000 Higheris	251				204	
		NOx	600 mg/Nm3	276				265	
1922/111									027070
2	FBC boiler E2	PM	100 mg/Nm3	Not Running	62.1	563	54.8	Not Running	59.4
	1	SO ₂	600 mg/Nm3		578	296	289		301
			1000011000011011000		EVA	(320)	0.550.00		12,000
		NOx	600 mg/Nm3		580	272	268		279
3	FBC boiler E3	PM	100 mg/Nm3	39.6	44	40.6	49.6	44.9	51.7
	FBC Boiler E3	C.M	100 mg/rema	33.0	44	40.0	45.0	94.3	31.7
		SO ₂	600 mg/Nm3	277	264	285	282	289	294
		III.	1454-90 1-41-00-200-111-0	X2703-5					(10,000)
		NOx	600 mg/Nm3	286	270	266	270	270	261
4	Hot Oil Unit	PM	150.0	39.7	Not Running	489	28.4	37.2	31.8
-	(Resorcinol Plant)		mg/Nm3		, mar tolanding		- M. M. C. T.	41.4	
		SO ₂	100 ppm	4.9		15.6	5.2	4.9	5.6
		NOx	50 ppm	20.6		26.4	21.7	14.8	11.2
5	DG set 1010 KVA (Standby)	PM	150 mg/Nm ⁻¹	33.1	48.9	33.6	40.8	46.8	61.6
		SO ₂	100 ppm	6.25	3.84	4.9	5.84	4.84	7.4
		NOx	50 ppm	34.2	28.6	27.1	24.6	21.6	29.4
				West Site					
6	FBC boiler W1	PM	100 mg/Nm3	51.7	47.1	56.4	64.2	61.3	Not Runnin
		SO ₂	600 mg/Nm3	560	290	282	296	284	
		NOx	600 mg/Nm3	571	264	274	258	276	
7	Hot Oil Plant shed-B	PM	150.0	41.2	54.8	48.9	40.6	51.9	40.7
			mg/Nm3						
		SO ₂	100 ppm	7.3	10.2	15.6	12.7	14.8	10.2
		NOx	50 ppm	27.4	21.6	26.4	29.3	23.7	26.1
8	Oil burner Shed B	PM	150.0	Not Running	Not Running	Not Running	Not Running	Not Running	Not Runnin
	(Standby)	SO ₂	mg/Nm3 100 ppm						
	8	NOx	50 ppm	1					
9	Boiler (50 TPH 2 Nos)		50 mg/Nm3	38.7	33.2	26.8	43.6	40.2	36.2
3	(New boilers)	SO ₂	600 mg/Nm3	291	265	272	284	281	291
	W2.W3	302	000 mg/mis	201	200	272	204	201	201
		NOx	300 mg/Nm3	282	282	266	218	270	284
)	Mercury	0.03 mg/Nm3	ND	ND	ND	ND	ND	ND
10	DG set 1500 KVA (Stand By)	РМ	150 D mg/Nm3	33.1	56.8	308	36.9	42.8	53.2
	(Journa By)	SO ₂	100 ppm	6.25	7.1	5.2	6.25	5.9	8.1
		NOx	50 ppm	34.2	35.4	317	23.6	29.4	21.6
			Account of	North S			10000	U-3876-1	
11	Thermic fluid heater	РМ	150.0 mg/Nm3	33.1	42.7	49.7	55.9	45.8	54.2
	DCO/DAP Plant	SO ₂	100 ppm	6.8	8.5	10.8	13.2	8.4	7.2
	OCO/DAF Flunt	NOx	50 ppm	24.9	19.6	17.2	21.5	15.4	19.8

Table 3: Ambient Air Monitoring details

Station	Parameter	Limit micro gm/NM³	April 2022	May 2022	June 2022	July 2022	August 2022	September 2022
66 KV	PM 2.5	60	32.0	34.0	32.0	33.0	31.0	29.0
	PM10	100	45.0	53.0	51.0	53.0	45.0	54.0
	SO2	80	13.7	16.8	21.6	17.9	22.6	16.9
	NO ₂	80	26.3	24.9	27.3	25.4	24.7	27.9
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	6.5	5.9	4.8	4.1	ND	ND
Opposite	PM 2.5	60	30.0	32.8	30.1	10.3	13.0	16.7
Shed D	PM10	100	41.0	54.8	46.7	34.5	41.8	15.2
	SO2	80	14.5	17.2	13.3	10.1	19.8	13.1
	NO ₂	80	21.0	25.6	17.8	14.6	12.7	17.3
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
West site ETP	PM 2.5	60	29.0	32.0	36.0	34.0	32.0	26.0
	PM10	100	39.0	55.0	56.0	52.0	59.0	50.0
	SO2	80	11.6	22.9	20.7	22.4	23.7	18.0
	NO ₂	80	25.9	27.1	26.1	24.9	26.3	26.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
North ETP	PM 2.5	60	28.0	30.0	34.0	30.0	33.0	30.0
	PM10	100	42.0	54.0	50.0	55.0	58.0	51.0
	SO2	80	15.3	20.6	18.4	16.8	19.4	17.4
	NO ₂	80	17.3	25.1	28.4	26.3	31.2	28.1
	Ammonia	400	4.6	4.3	4.1	3.4	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
TSDF	PM 2.5	60	31.0	35.0	31.0	35.0	29.0	27.0
	PM10	100	38.0	51.0	54.0	51.0	49.0	53.0
	SO2	80	12.0	18.5	16.9	14.3	16.9	18.2
	NO ₂	80	22.8	26.3	24.3	28.4	27.9	26.5

	Ammonia	400	3.1	2.6	3.2	3.9	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Main Guest	PM 2.5	60	37.6	53.6	54.8	39.2	40.2	45.5
House	PM10	100	15.6	20.4	13.8	9.8	15.6	15.1
	SO2	80	17.0	29.3	20.1	14.0	12.4	17.8
	NO ₂	80	ND	ND	ND	ND	ND	ND
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	25.0	31.0	32.0	29.0	28.0	31.0
Wyeth Colony	PM 2.5	60	36.0	52.0	53.0	50.0	57.0	48.0
	PM10	100	14.1	20.7	19.2	18.5	19.4	16.4
	SO2	80	24.1	29.5	25.0	26.7	30.2	30.4
	NO ₂	80	ND	ND	ND	ND	ND	ND
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	37.6	53.6	54.8	39.2	40.2	45.5
Gram panchayat	PM 2.5	60	31.6	34.6	30.5	14.3	18.4	15.3
hall	PM10	100	41.7	52.6	50.7	38.4	34.1	31.9
	SO2	80	13.6	21.9	10.7	7.6	7.6	17.4
	NO ₂	80	23.7	25.9	20.4	14.7	11.7	18.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Main office, North	PM 2.5	60	30.6	35.6	26.4	11.4	15.3	18.0
site	PM10	100	39.0	52.0	49.6	37.9	45.2	46.9
	SO2	80	12.4	21.3	10.8	8.9	14.4	16.2
	NO ₂	80	22.5	25.2	16.7	14.6	11.3	21.7
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Haria water tank	PM 2.5	60	26.0	31.5	29.3	12.5	13.4	17.5
	PM10	100	37.3	55.3	53.6	39.1	40.8	46.9
	SO2	80	11.6	16.4	10.8	10.6	19.7	16.7
	NO ₂	80	24.5	25.3	16.3	14.8	11.8	19.2
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Table 4: Noise level monitoring data (Day Time)

Sr	Location	Noise I	Permissible					
No.		April 2022	May 2022	June 2022	July 2022	August 2022	September 2022	Limits, dBA
1	66KVA substation	66.2	67.9	66.3	67	62.7	64.0	75
2	Opposite shed D	64.6	66.7	67.6	69.4	65.9	62.8	75
3	West site ETP	67.5	70.2	68.2	67.2	65.9	64.7	75
4	North site ETP	69.2	67.3	69.1	67.8	66.4	64.3	75
5	Near TSDF	57.8	54.3	56.9	58.2	57.3	59.2	75
6	Near main guest house	68.6	66.5	68.2	66.9	60.3	62.8	75
7	At wyeth colony	58.1	56.8	58.8	61.7	60.8	62.5	75
8	Gram panchayat hall	69.5	67.9	63.2	61.5	62.4	61.8	75
9	Near main office North site	57.3	55.9	57.4	59.4	58.7	60.0	75
10	Haria water tank	64	67.4	65.5	66.8	66.8	64.9	75

Table 5: Noise level monitoring data (Night Time)

Sr	Location	Noise Le	Noise Level, dBA					
No.		April	May	June	July	August	September	Limits, dBA
		2022	2022	2022	2022	2022	2022	
1	66KVA substation	51.5	50.7	53.6	51.9	52.9	54.0	70
2	Opposite shed D	53.5	55.1	53.7	52.7	53.4	54.5	70
3	West site ETP	51.2	54.6	52.4	54.2	55.3	52.9	70
4	North site ETP	60.7	58.4	55.1	54.6	55.4	53.2	70
5	Near TSDF	50.6	50.9	51.9	50.8	49.7	45.8	70
6	Near main guest house	53.2	56.5	54.3	52.1	50.1	53.4	70
7	At wyeth colony	48.9	51.3	52.6	53.6	55.9	53.8	70
8	Gram panchayat hall	51.6	49.8	53.8	51.2	53.7	52.6	70
9	Near main office North site	50.2	49.5	52.9	54.8	55.3	56.7	70
10	Haria water tank	52.8	53.2	51.2	53.4	52.4	50.7	70

Table 6: CSR Activities

		Ltd. to September 2022		
Sr. N o.	Name of Project	Location Village, District (State)	Amount Budgeted for the FY 2022-23 (in ₹)	Amount Budgeted for the FY 2022-23 (in ₹)
1	Enhancement of educational practices in Kalyani Shala	Atul, Valsad (Gujarat)	40,00,000	16,57,545
2	Improvement of teaching methodology for primary school children - Adhyapika project	Valsad (Gujarat)	85,00,000	26,52,737
3	Support to Eklavya Model Residential School -Atul Vidyamandir	Pardi, Valsad (Gujarat)	15,00,000	6,70,492
4	Support to develop a school in a tribal area	Chondha, Navsari (Gujarat)	2,00,000	47,628
5	Provision of scholarships to needy and meritorious students	Valsad (Gujarat)	10,00,000	1,52,044
6	Provide assistance to lesser privileged children	Valsad (Gujarat)	11,00,000	6,98,352
7	Provision of education kits to children	Valsad (Gujarat)	8,00,000	7,43,660
8	Conservation of manuscripts	Ahmedabad (Gujarat)	50,00,000	2
9	Provide assistance to children with special needs	Bharuch (Gujarat)	1,00,000	30,000
10	Promote learning and life skills among children	Bangalore (Karnataka)	2,00,000	
11	Contribution towards publication of books on Indian culture Ecology Philosophy	Jaipur (Rajasthan)	3,50,000	-
12	Support to develop a school in West Bengal	Murshidabad (West Bengal)	2,00,000	2,00,000
13	Skills training to youth as apprentices	Valsad (Gujarat)	1,10,00,000	72,28,747
14	Empowerment of women youth through various vocational training courses	Valsad (Gujarat)	30,00,000	17,17,601

15	Develop micro entrepreneurs to provide sustainable livelihood	Valsad (Gujarat)	15,00,000	3,02,051
16	Create livelihood opportunities for tribal families by providing cows	Valsad (Gujarat)	35,00,000	-
17	Empower women through self-help groups	Valsad (Gujarat)	20,00,000	11,55,19
18	Enhancement of rural health through health camps	Valsad (Gujarat)	25,00,000	8,07,978
19	Establish Atul Medical Diagnostic Centre	Atul, Valsad (Gujarat)	2,00,00,000	-
20	Promote health and well-being of adolescents and women	Valsad (Gujarat)	25,00,000	11,31,75
21	Provision of blood units to the needy and deserted patients	Bharuch (Gujarat)	2,40,000	-
22	Upgradation of sports infrastructure and equipment	Atul, Valsad (Gujarat)	60,00,000	1,76,000
23	Promote Fit@50+ Women's Trans Himalayan Expedition	India	5,00,000	5,00,000
24	Provision of medical treatment to needy patients	Valsad (Gujarat)	15,00,000	15,43,14
25	Valsad Flood Releif		*	4,66,798
26	Develop community infrastructure in Atul Village	Atul, Valsad (Gujarat)	2,10,00,000	9,54,591
27	Infrastructure development in Atul and surrounding villages	Valsad (Gujarat)	50,00,000	9,405
28	Construction of toilet blocks in Kalyani Shala	Valsad (Gujarat)	80,00,000	(2)
29	Develop Ulhas cricket ground	Valsad (Gujarat)	50,00,000	
30	Construction of toilet blocks at Samdoli Shikshan Sansthan	Samdoli (Maharashtra)	12,50,000	2,00,000
31	Establishment of solid waste management system in Atul village	Atul, Valsad (Gujarat)	35,00,000	15,78,32

Initiate solid waste management project in five villages	Atul, Valsad (Gujarat)	40,00,000	-
Initiate natural resource management project	Atul, Valsad (Gujarat)	25,00,000	7,63,493
Conserve energy through solar system	Valsad (Gujarat)	50,00,000	1,38,706
Set up nature-based wastewater recycling systems	Valsad (Gujarat)	1,55,00,000	14,68,536
Conserve water through various interventions	Valsad (Gujarat)	20,00,000	-
Enhance green cover- Tree Plantation Project	Valsad (Gujarat)	20,00,000	13,12,364
Protection of animals	Valsad (Gujarat)	5,00,000	1,21,575
CSR budget (a+b+c+d+e+f)		15,24,40,000	2,84,21,906
istrative overheads (OH)		75,60,000	A
for Atul Limited (CSR budget + OH)		16,00,00,000	2,84,21,906
	Initiate natural resource management project Conserve energy through solar system Set up nature-based wastewater recycling systems Conserve water through various interventions Enhance green cover- Tree Plantation Project Protection of animals CSR budget (a+b+c+d+e+f) istrative overheads (OH)	five villages Initiate natural resource management project Conserve energy through solar system Set up nature-based wastewater recycling systems Conserve water through various interventions Enhance green cover- Tree Plantation Project Protection of animals CSR budget (a+b+c+d+e+f) istrative overheads (OH) (Gujarat) Atul, Valsad (Gujarat) Valsad (Gujarat) Valsad (Gujarat) Valsad (Gujarat)	five villages Initiate natural resource management project Conserve energy through solar system Valsad (Gujarat) Set up nature-based wastewater recycling systems Valsad (Gujarat) Conserve water through various interventions Enhance green cover- Tree Plantation Project Protection of animals Valsad (Gujarat) Valsad (Gujarat) Valsad (Gujarat) 20,00,000 Valsad (Gujarat) 20,00,000 Valsad (Gujarat) 5,00,000 CSR budget (a+b+c+d+e+f) 15,24,40,000 75,60,000

Annexure 1: Environmental Statement

ID: 23158

Atul Ltd

Utilities and Services Unit Atul 396 020, Gujarat, India services@atul.co.in | www.atul.co.in (+91 2632) 230000

Atul|GPCB|Form V|2021-22

September 20, 2022

Member Secretary, Gujarat Pollution Control Board, Paryavaran Bhavan, Sector 10-A, GANDHINAGAR - 382 010

SUB: Submission of form V.

Dear Sir.

We are enclosing herewith duly filled form - V for the financial year ending March 31st, 2022.

Kindly receive the same.

Thanking you,

Yours faithfully,

For Atul Ltd,

Hriday Desai

(Vice President - EHS Assurance)

Regional Officer,

Gujarat Pollution Control Board

Vapi (Dist. Valsad)

Registered office: Atul House, G | Patel Marg, Ahmedabad 380 014, Gujarat, India CIN: L99999GJ1975PLC002859

[Form V]

(See Rule 14)

Environmental Statement for the financial year ending the 31st March 2022

Part - A

(i) Name and address of the owner/occupier of the industry operation or process.

Mr. B. N. Mohanan Occupier, Atul Limited, Atul – 396 020, Dist.: Valsad

- (ii) Industry category Primary (STC code) Secondary (STC code)

 Large scale Chemical Manufacturing Industry
- (iii) Production Capacity Please refer Annexure 1
- (iv) Year of establishment : 1952
- (v) Date of last environmental Statement submitted: September 22, 2021

Part - B

Water and Raw Material Consumption

(1) Water consumption m³/day

Process : 8411 kl/day Cooling : 1873 kl/day Domestic : 376 kl/day

Sr. No.	Name of products	Process water consumption per unit of product output		
		During the previous financial year	During the current financial year	
		(1)	(2)	
1. Crop Protection		3.84 kl/mt	16.35 kl/mt	
2.	Bulk Intermediate		1.38 kl/mt	
3. (Colours	69.26 kl/mt	87.84 kl/mt	
4. P	harma & Polymer	4.22 kl/mt	5.27 kl/mt	

(2) Raw material consumption

*Name of	Name of	Consumption of raw mo	aterial per unit of output
raw materials	products	During the previous financial year	During the current financial year

Please refer Annexure - 2

* Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

Part - C
Pollution discharged to environment/unit of output

(Parameter as specified in the consent issued)

Pollutants	Quant pollut discha (mass	ants irged	Concentro pollutants in dischar- (mass/voll	ges	Percentage of variation from prescribed standards with reasons
(a)Water (b)Air	COD SO2 NOX HCI CI2 NH3 Phosgene SO2	: 1930 : 21.87 : 14.71 : 6.85 I : 5.65 N	kg/day (199 Mg/Nm³ Mg/Nm³ Mg/Nm³ Mg/Nm³ Mg/Nm³		NIL Stack)
(c)Air	PM SO2 NOx	: 274.89	Mg/Nm³ 9 Mg/Nm³ 5 Mg/Nm³	(Flue gas s	stack)

Hazardous Wastes

(as specified under Hazardous Wastes (Management & Handling) Rules, 1989)

Hazardous Wastes	Total Quantity (kg)			
	During the previous financial year	During the current Financial year		
From process	36136215	73671645		
From pollution control facilities (ETP sludge and Salt from MEE)	22269000	29847720		
Total	58505215	103519365		

Part - E

Solid Waste

Solid Wastes	Total Quantity (kg)			
	During the previous financial year	During the current financial year		
(a)From process (Fly Ash)	97007642	79867000		
(b)From pollution control facility (c) (1) Quantity recycled or re-utilised	Nil	Nil Nil		
within the unit (2) Sold	97007642	79867000		
(3) Disposed				

Part-F

Please specify the characterisation (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

Please Refer Annexure - 3

Part - G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production.

Please Refer Annexure - 4

Additional measures/investment proposal for environmental protection abatement of pollution, prevention of pollution.

Please Refer Annexure - 5

Part-I

Any other particulars for improving the quality of the environment.

- New collection tank at central ETP is under construction and other modifications is under construction stage and after completion of all installation, central ETP plant will be operate on SCADA system.
- To reduce moisture content in the gypsum generated from neutralization of effluent, we are upgrading our EMS by installing membrane type filter press followed by paddle dryer at West site.
- 3. Implementation of New HRTI Clarifier as a substitute of CFI at west site ETP.
- 4. Installation of MEE for High TDS stream from 2, 4 D plant is almost completed and commissioned will be start by Oct. 2022.
- Additional 33 distillation system upgraded solvent recovery systems for advanced instrumented controls.
- 6. Additional 33 nos of toxic gas detectors installed at prominent location.
- 7. PTS & screw conveyors provided for close powder charging initiatives.
- 8. Additional 20 nos of close sampling systems provided for corrosive liquids.
- Enhancement of storage spaces: east site RM warehouse and north site FG warehouse commissioned.
- 10. Company has planted 48000 number of saplings in FY 2021-22

Annexure: 1: list of Products

Product	Consented
	Quantity TPA
Azo dyes	6600
Sulfur Black	9999.96
Sulfur Dyes range	300
Naphthol range	900
Fast Color Bases	480
Disperse dyes	1422
Optical Brighteners	120
Reactive Dyes	1527.6
Vat dyes	1260
Caustic soda/potash & sodium sulfide	48000
Liquid Chlorine /Hcl/Hydrogen	42000
Carbamate group of Agrochemicals	519.6
Diuron	2640
Trichlo Carbon	99.6
Cartap Hcl	600
Carbendazim	250.8
Herbicides (2,4-D & related products)	26040
MCPA	abartantan pa
Pyridine based Insecticides & herbicides chemical	349.92
Imidacloprid	
Triazole based Fungiside	20.04
Pyrethroides	120
Sulphonyl Urea	423
Glyphosate	780
Isoprothiolane	219.6
Fipronil	60
Formulations	2400
Buprofesin	48
Imazethpyr	21.96
Kresoxim Methyl	24.96
Fenoxaprop	9.96
Cyhalofop	9.96
Pyrazosulfurone	6
BisPyribac Sodium	9.96
Azoxystrobin	24.96
Quizalofop	15

Thiamethoxam 120 Metribuzine 120 Diafenthiurone 50.04 Mabendazole 24 Tolbutamide 30 Quiniodochlor 180 Bulk Drugs & Intermediates 115.2 Dechlofenac sodium / potassium 30 Atenolol 20.4 Fresamide 15.6 Trimethoprim 10.8 Para hydroxy acetophenone 20.4 Para hydroxy phenyl acetamide 36 Acyclovir 62.4 Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins 1940.4 Polygrip TPU based 500,04 Polygrip TPU based 500,04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfhan Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyryzzole Base 126		
Diofenthiurone 50.04 Mabendazole 24 Tolbutamide 30 Quiniodochlor 180 Bulk Drugs & Intermediates 115.2 Dechlofenac sodium / potassium 30 Atenolol 20.4 Fresamide 15.6 Trimethoprim 10.8 Para hydroxy acetophenone 20.4 Para hydroxy phenyl acetamide 36 Acyclovir 62.4 Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins 1940.4 Polygnip TPU based 500.04 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 500.04 Chlorzoxazone & other related products 60 4 Ethyl 2.3 – Diorcopiperazino carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 38600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Thiamethoxam	120
Mabendazole 24 Tolbutamide 30 Quiniodochlor 180 Bulk Drugs & Intermediates 115.2 Dechlofenac sodium / potassium 30 Atenolol 20.4 Fresamide 15.6 Trimethoprim 10.8 Para hydroxy acetophenone 20.4 Para hydroxy phenyl acetamide 36 Acyclovir 62.4 Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based 500.04 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2.3 – Diorcopiperazino carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 38600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Metribuzine	120
Tolbutamide 30 Quiniodochlor 1890 Bulk Drugs & Intermediates 115.2 Dechlofenac sodium / potassium 30 Atenolol 20.4 Fresamide 15.6 Trimethoprim 10.8 Para hydroxy acetophenone 20.4 Para hydroxy phenyl acetamide 36 Acyclovir 62.4 Bathenechol 62.4 Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene 8880 Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Diafenthiurone	50.04
Quiniodochlor180Bulk Drugs & Intermediates115.2Dechlofenac sodium / potassium30Atenolol20.4Fresamide15.6Trimethoprim10.8Para hydroxy acetophenone20.4Para hydroxy phenyl acetamide36Acyclovir62.4Bathenechol62.4Pharma Intermediates & Chemicals3600Epoxy Resin31200Vinyl Easter Resins450Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins249.6Formaldehyde Resins1940.4Polyamide resins1940.4Polygrip TPU based500.04Polygrip rubber based3600Anthraquinone, Naphthalene, Benzene8880Intermediates, (Including Beta – Napthol & BON Acid)5520Meta hydroxy phenol5520Carbamite360Chlorzoxazone & other related products604 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride39.6Imino Dibenzyl 5 carbonyl Chloride9.6Formaldehyde and base products.38400Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts38400Sulpha Drug Intermediate2325.6Acetyl Sulphanilyl Chloride and its derivatives.18000Acetanilide6000Sulpha Methyl Phenazole Sodium13.2Pyrazole Base126	Mabendazole -	24
Bulk Drugs & Intermediates 115.2 Dechlofenac sodium / potassium 30 Atenolol 20.4 Fresamide 15.6 Trimethoprim 10.8 Para hydroxy acetophenone 20.4 Para hydroxy phenyl acetamide 36 Acyclovir 62.4 Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, 249.6 Formaldehyde Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene 8880 Intermediates. (Including Beta – Napthol & BON Acid) 5520 Carbamite 600 Chlorzoxazone & other related products 400 Eformaldehyde and base products 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 38600 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Tolbutamide	30
Dechlofenac sodium / potassium Atenolol Atenolol Atenolol Fresamide Trimethoprim 10.8 Para hydroxy acetophenone Para hydroxy phenyl acetamide Acyclovir Bathenechol Acyclovir Bathenechol Formal Intermediates & Chemicals Epoxy Resin Vinyl Easter Resins Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins 1940.4 Polygrip TPU based Polygrip TPU based Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetyl Sulphanilyl Chloride and its derivatives. Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Quiniodochlor	180
Atenolol 20.4 Fresamide 15.6 Trimethoprim 10.8 Para hydroxy acetophenone 20.4 Para hydroxy phenyl acetamide 36 Acyclovir 62.4 Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, 249.6 Formaldehyde Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene 1ntermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Bulk Drugs & Intermediates	115.2
Fresamide Trimethoprim 10.8 Para hydroxy acetophenone 20.4 Para hydroxy phenyl acetamide 36 Acyclovir Bathenechol Bathenechol Pharma Intermediates & Chemicals Epoxy Resin 31200 Vinyl Easter Resins Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Formaldehyde and base products. Sulpha Drug Intermediate Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetyl Sulphanilyl Chloride and its derivatives. Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Dechlofenac sodium / potassium	30
Trimethoprim 10.8 Para hydroxy acetophenone 20.4 Para hydroxy phenyl acetamide 36 Acyclovir 62.4 Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, 249.6 Formaldehyde Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene 8880 Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Atenolol	20.4
Para hydroxy acetophenone Para hydroxy phenyl acetamide Acyclovir Bathenechol Bathenechol Bepara Intermediates & Chemicals Epoxy Resin Vinyl Easter Resins Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins UF/MF/PF/DiCyandiamide Resins UF/MF/PF/DiCyandiamide Resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Fresamide	15.6
Para hydroxy phenyl acetamide Acyclovir Bathenechol Bathenechol Pharma Intermediates & Chemicals Epoxy Resin 31200 Vinyl Easter Resins Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Trimethoprim	10.8
Acyclovir 62.4 Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, 249.6 Formaldehyde Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene 104.2 Intermediates. (Including Beta – Napthol & BON Acid) 5520 Carbamite 360 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Para hydroxy acetophenone	20.4
Bathenechol 62.4 Pharma Intermediates & Chemicals 3600 Epoxy Resin 31200 Vinyl Easter Resins 450 Ketone Formaldehyde Resins & Sulphonamide, 249.6 Formaldehyde Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene 10termediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Sults Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Para hydroxy phenyl acetamide	36
Pharma Intermediates & Chemicals Epoxy Resin 31200 Vinyl Easter Resins Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Acyclovir	62.4
Epoxy Resin Vinyl Easter Resins Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Bathenechol	62.4
Vinyl Easter Resins Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins 3250.8 Polyamide resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base	Pharma Intermediates & Chemicals	3600
Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins Polyamide resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base	Epoxy Resin	31200
Formaldehyde Resins UF/MF/PF/DiCyandiamide Resins Polyamide resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Sulfs Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Vinyl Easter Resins	450
UF/MF/PF/DiCyandiamide Resins Polyamide resins 1940.4 Polygrip TPU based Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates (Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Short and Short related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Sulfs Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Ketone Formaldehyde Resins & Sulphonamide,	249.6
Polyamide resins 1940.4 Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene 8880 Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Formaldehyde Resins	
Polygrip TPU based 500.04 Polygrip rubber based 3600 Anthraquinone, Naphthalene, Benzene 8880 Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Sulfuric Acid / Oleum / Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	UF/MF/PF/DiCyandiamide Resins	3250.8
Polygrip rubber based Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite 360 Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride 9,6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Sults Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide Sulpha Methyl Phenazole Sodium 13,2 Pyrazole Base	Polyamide resins	1940.4
Anthraquinone, Naphthalene, Benzene Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol Carbamite Chlorzoxazone & other related products 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride Imino Dibenzyl 5 carbonyl Chloride Formaldehyde and base products. Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Sults Sulpha Drug Intermediate Acetyl Sulphanilyl Chloride and its derivatives. Acetanilide Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Polygrip TPU based	500.04
Intermediates.(Including Beta – Napthol & BON Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Polygrip rubber based	3600
Acid) Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Sults Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Anthraquinone, Naphthalene, Benzene	8880
Meta hydroxy phenol 5520 Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Intermediates.(Including Beta – Napthol & BON	The state of the s
Carbamite 360 Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Acid)	
Chlorzoxazone & other related products 60 4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Meta hydroxy phenol	5520
4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride 39.6 Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Carbamite	360
Imino Dibenzyl 5 carbonyl Chloride 9.6 Formaldehyde and base products. 38400 Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Chlorzoxazone & other related products	60
Formaldehyde and base products. Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride	39.6
Sulfuric Acid / Oleum / Chlorosulphonic Acid & 138600 Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Imino Dibenzyl 5 carbonyl Chloride	9.6
Salts Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Formaldehyde and base products.	38400
Sulpha Drug Intermediate 2325.6 Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Sulfuric Acid / Oleum / Chlorosulphonic Acid &	138600
Acetyl Sulphanilyl Chloride and its derivatives. 18000 Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Salts	ring the market of
Acetanilide 6000 Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Sulpha Drug Intermediate	2325.6
Sulpha Methyl Phenazole Sodium 13.2 Pyrazole Base 126	Acetyl Sulphanilyl Chloride and its derivatives.	18000
Pyrazole Base 126	Acetanilide	6000
A CONTRACT OF THE PROPERTY OF	Sulpha Methyl Phenazole Sodium	13.2
Sulphanilic acid 300	Pyrazole Base	126
Salpharine dela 500	Sulphanilic acid	300

Bis Phenol A	5000.4
Hexamine Hexamine	1800
Epoxy Intermediates	285.6
Hardener & Auxiliaries	6000
Hardener Intermediates	8400
Bisphenol S & Intermediate Chemicals	199.2
Sodium Thio sulphate (dry basis)	10800
Sodium Thio sulphate (wet basis)	22800
Phosgene	5000.004
HX-13059	60
Anisole	1992
Resoform 18,19,20	1020
1,3 Cyclohexanedione	960
Agro, Pharma intermediates, Isocyanats &	4980
Carbonat Esters, etc.	ethorito in
Trans-4-MCHI	COOR N
p-Anisyl chloroformate	
DI-TERT-BUTYL DICARBONATE (Boc. anhydride)	A SERVICE DE LA CONTRACTION DE
N, N- Disuccinimidyl Carbonate	etpreup mei
Avobenzene	999.96
Octacrylene	999.96
OctaylMethoxy Cinnamate	2400
Anethole	1999.92
Raspberry Ketone	1200
P-AninylPropanal	1200
Grand Total Production Sodium Thiosulphate	466922.004
(dry basis)	Alai
Grand Total Production Sodium Thiosulphate	478922.004
(wet basis)	

Annexure: 2: List of raw material

RAW MATERIAL	TPM
Acetanilide	52
Acetic Acid	97.08
Acetic Anhydride	6.5
Acetone	5490.8
Acetonitrile	169.18
Activated carbon	1
Alum	40
Aluminium Chloride	289.32
Aluminium ingots	. 18
Ammonia gas liquor 25%	317
Ammonium acetate	20.58
Anhydrous Ammonia	9
Aniline oil	43
Anisole	173.33
Anthraquinone	6
Barium carbonate (100%)	58.88
Benzene(KL.)	660
Benzophenone	101.5
Bis Phenol A	3398.63
Carbon dioxide gas	346.53
Castor oil	35
Caustic flakes	3466.98
Caustic Potas Flakes	75
Caustic Soda Lye	3201.76
Chlorine	3822
Chlorosulphonic Acid	250
Chlroprine rubber	45 .
Copper chloride	4
Cresol	133
CS ₂	12.09
Cyano Pyrazole	5
Cyanoacetic acid	32.92
Cyanuric Chloride	18

Cyclohexane	57.08
Darco	9.77
DBU	23.24
Di Chloro Diphenyl sulphone	107
Di Isopropyl Malonate	24.72
Di methyl Sulfate	286.44
Dibutyl phthalate	7
Dichloro aniline	151.4
Dimethyl Amino Dichloro Propane Hydrochloride	40
Dimethyl carbonate	5.73
Dioxane	95.89
Divyol oil	28.77
DMA	44.8
DMA Tosylate	9
DMF	68.15
DPS CONTROL OF THE CO	1
EDA	69.32
EDC	331.99
Epichlohydrine /recovered ECH	4911
Ethanol	5.31
Ethyl acetate	4586.05
Ethyl hexanol	135
Ethylene Dibromide	22.48
Ethylene Dichloride	12.14
Flocculating agent	1799.95
Formaldehyde	106.07
Glacial acetic acid	549.57
Glycerin	24
Guanidine Nitrate	33.95
H_2O_2	55.42
H-Acid H-Acid	12
HCI Land Land Land Land Land Land Land Land	4924.8
Hexa Hydro Phthalic anhydride	9
Hexane	29.32
Hydrated Lime	2000
Hydrogen (g)	50.43
Hydroxyl amine.HCl	480.75

Hyflo .	110.65		
IPA	339.55		
Iron Fillings	50		
Lime stone powder	1257		
MA	26.08		
Manganese Dioxide	220		
MCB	123		
MDC	406.29		
Methanol	1100		
Mono Chloro Acetic Acid	2170		
m-phenoxy benzaldehye	2		
n- Butanol	999		
N- Hydroxy Succinimide	419.15		
Na ₂ SO ₃	10.5		
Napthalene	60		
n-Hexane	54.13		
Nitric Acid 60%	50		
Nitric Acid 98%	95		
Nitro guanidine	52.49		
Nitrogen	1585 NM3/hr		
NN Dimethyl Aniline	32.57		
O-cresol	503		
Oleum 25%	140		
Oleum 65%	1221		
Oxygen	49.7		
p-Anisaldehyde	118.6		
p-Anisic aldehyde	179		
Paraffin oil	9.13		
PCF	28.35		
P-cresol	860.91		
Phenol	1350.56		
Phosgene	180		
Phosphoric acid	54.5		
Phthalic anhydride	55		
PMIDA	158.78		
Potassium Chloride	360		

Potassium hydroxide	264.8
Propionyl chloride	167.16
Prpanaldehyde	51
PTBP Resin	12
Pure 4-Methyl cyclohexyanol	8.15
Rainey Ni catalyst	50.34
Reso - Tar	49.23
Resorcinol	246.24
SNA	37.09
Soda Ash	209.38
sodium bicarbonate	130,33
Sodium bisulphate	548.28
Sodium Carbonate	117.09
Sodium Chloride	6000
Sodium hypochlorite	3639.31
Sodium metal	667.8
Sodium methoxide (Powder solution)	131.85
Sodium Sulphide	100.4
Sodium Thiosulphate	195
Sodium-t-butoxide	755.3
Solvents	275.42
Styrene	29.92
Sulfinate	1
Sulfuric acid	2596
Sulfuryl chloride (SO2CL2)	376
Suphur Powder	2430.3
Synthetic cresol	5
Tamol MNO	50
t-Butyl alcohol	29
Tertiary butyl amine	0.89
TFE SECOND SECON	9
THE	4151.74
Thionyl Chloride	3
Toluene	200
TPU	6.25
Tri ethylenetetramine	13
Tribtyl Amine	778.13

	*
Triethyl amine	138.52
Urea	183
10% Brine solution	684.87
10% FeSO ₄	23.47
2, Chloro 5-methyl chloro pyridine	17
2,4-DNCB	440.85
2-[Nitroimino] imidazolidine	14.82
2-4 Di chloro Aniline	5.5
2-Amino-4,6 dimethoxy pyridine	27.95
2-chloro-5- methylchloro-pyridine	21.75
2-chloro-5-chloro methyl thiazole	7.8
2-Ethyl hexanol	56.5
3-methyl-4-nitroimino perhydro-1,3,5- oxadiazine	7.6
4-amino-6-tertiary- butyl-3-mercapto- 1,2,4-triazinone	10.1
4-methoxyacetophenone	60.88
4-Methoxybenzyl alcohol	376.41
4-t-butylbenzoicacid	82.81
Fuel:	
Coal / Lignite	46925
Diesel Oil (KI)	640
Furnace oil (KI)	1100
Natural gas (m3)	200000

Annexure: 3: Description of Solid Waste at Atul

Description of waste	Physical form	Calorific Value Cal / gms	Biodegradability	Nature / Chemical composition of Waste	Mode of Disposal
Used oil, KI	Wet cake		Biodegradable	Lubricant oil with minor contamination	Collection, Storage, Transportation, sell to registered refiners/recyclers.
Wastes / residues / contaminant cotton rags or other cleaing material	Solid		Biodegradable	Lubricant oil with minor contamination	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator.
Sludge & filters contaminated with oil,	Semi solid			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator.
Membranes	Solid		ervita en en en	Polyfluoro & Polycarboxylic groups	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Waste Resin,	Solid		Non biodegradable	Polymer	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL

Sulfurised Carbon,	Solid	6000		Carbon and impurity of product	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Activated Carbon,	Solid	6000	a south	Carbon and impurity of product	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Brine purification sludge,	Sludge	No Calorific Value	Non biodegradable	Inorganic compounds e.g. CaCo ₃ , Mg(OH) ₂	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Sulphur sludge,	Solid	5000	Partially Bio- degradable	Inorganic compounds and Sulphur	Collection, Storage, Transportation, Disposal at TSDF OR send to cement industry for co- processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Hot Gas filter Ash,	Solid	No calorific Value	Non biodegradable	Inorganic Material	Collection, Storage, Transportation, Disposal at own TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Bottom Sludge after recovery of Sulphur Sludge,	Solid	5000	Partialy Biodegradable	Inorganic	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL

Waste Catalyst,	Solid	No colorific	Mee		
		No calorific Value	Non biodegradable	Inorganic, Not explosive, Non Reactivie	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Spent Solvents, Kl/Month	Liq			Solvent	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user.
Various type of Residue	Solid	6500	Partially Bio- degradable	Polymeric aromatic Organics.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
OCBC / OCT distillation residue,	Visc. Liq.	8000	Not Bio- degradable	Polymeric aromatic compound.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
waste residue Bulk Intermediate (meta hydroxy phenol) (Tar),	Solid			10-12% Hydroxyl based benzene derivative	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co- processing at GGEPIL OR disposal at common facility at BEIL

Waste residue (from resorcinol plant)	Solid			Total Action	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Gypsum (From meta hydroxy phenol Plant),	Solid	Not Applicable	Non biodegradable	Inorganic Compound Mostly Calcium Sulphate 75 - 77%, Moisture 23-25%	Collection, Storage, Transportation, Disposal at own TSDF OR selling to actual user OR send to cement industry for co- processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Sodium Sulphite,	Solid	Not Applicable	Second Native	Inorganic Compound, Mostly Sodium Sulphite 70-75%, Moisture 25-30%	Collection, Storage, Transportation, Disposal at own TSDF OR selling to actual user OR send to cement industry for co- processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Waste/Salt Lime Dust	Powder		- Arthurlag	Inorganic Compound	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Waste from Urea Formaldehyde Polymer product,	Solid	3500	Bio-degradable	Organic polymeric compound	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL

Sludge containing higheramino compound,	Tar	5200	Bio-degradable	Polymeric organic amines.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Filter cake of Epoxy resins with resin contamination	Semi Solid	3200	Bio-degradable	Polymeric organic compound	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Aluminium Hydroxide,	Solid	No calorific Value	Non biodegradable	Mostly Al Hydroxide	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Iron sludge,	Solid	No calorific Value	Non biodegradable	Mostly Iron, oxide	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Brass residue,	Solid	No calorific Value	Non biodegradable	Mostly Copper & Iron.	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Still / Other residue,	Tar	6500	Partially Bio- degradable	Polymeric aromatic Organics.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co-

	ono In	1,000	\$10,000 \$60,000	e subayar E l'autobre inco	processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Darco / filter aid sludge,	Solid	2500	Partially Bio- degradable	Mainly Carbon.	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Iron Residue,	Wetcake		Non biodegradable	Water, iron	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Hyflo sludge,	Wet cake			0.87 % Specific gravity, 80% solid, Inorganic & organic content	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
PER crystal residue,	Semi Solid	Seria Assi		Specific gravity 1.1557, Organic	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL

				Ta	
Filter aid sludge for Hg recovery,				Containing Hg	Collection, Storage, Transportation for recovery of mercury
Aluminium Ash,	Solid		Non biodegradable	Water, oxides of Aluminium & Aluminium Metal	Collection, Starage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
N.B.Tar / ODCB Tar	Semi Solid			- AV BG BROKE CSURSE CS	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
ONT Tar	Solid / Tary	-		- 200500 67 61 96 62 97 75 87 87 87	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Copper Hydroxide Wet cake	Solid	Not applicable	Non biodegradable	Copper Hydroxide	Collection, storage, Transportation and sale to authorized industry having permission under rule-9 of Hazardous & other wastes (Management & Transboundary Movement) rule-2016
Dust from Air Filtration System,	Solid	-		Residual product particles	Collection, Storage, Transportation for reprocessing and reusing

Spent Acid	Liquid	Not applicable	Non biodegradable	Sulphuric acid	Collection, storage, transportation and sel
	1 25/19 1 25/19		bloacyradable	boungs:	to authorized industry having permission under rule-9 of Hazardous & other wastes (Management & Transboundary movement) rule-2016 Or sell to: M/s Shree Cement Ltd.,
Spent Organic	Liquid				located at Village Ras, Jaitaran Dist: Pali & at Bangurnagar, Beawar Dist: Ajmer, Rajasthan.
solvent		The same	Scripe Holl	Mainly contains Spent Organic solvent	Collection, storage, Transportation and sale to authorized industry having permission under rule-9 of Hazardous & other wastes (Management & Transboundary Movement) rule-2016
Waste Residue (Phin)	Solid				Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co-
Donne	*				processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR OR disposal at common facility at BEIL
DCDPS waste	Solid				Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user OR co-processing at RSPL,
Waste from Pharma	Solid			Whatman	Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co- processing at GGEPIL OR disposal at common facility at BEIL.
ntermediates	SOIIQ			** KING UKUST	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co-

					SSSA MOTOR MOTOR MOTOR MOTOR	processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Spent Carbon catalyst	Solid		puoki	Board	Personal Consultation of the Consultation of t	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Spent carbon,	Solid	6000	2015-201 1-1-122	Biodegradable	Carbon cake contains aq. Methanol Aqueous Carbon Cake	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Date expired, discarded and off- specification product,	Solid		pt. con	ATOMA DE LOS		Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Spent Mother liquor, Kl/Month	Liquid		Shrie	ine i	Mainly contains Spent Organic solvent	Collection, Storage, Transportation for recovery and reusing
Spent Solvents, Kl/Month	Liq	in	telling	· All and a	Solvent	Collection, Storage, Transportation for recovery

Still / Other residue,	Tar	6500	Partially Bio-	Polymeric aromatic	Collection, Storage, Transportation, Disposa
Carriery .			degradable	Organics.	by Incineration at own Incinerator OR co processing at RSPL, Panoli OR co
Pyridine based insecticides & herbicides (Darco / Filter aid Sludge),	Solid	2500	Partly biodegradable	Mainly carbon	processing at cement industry OR co processing at SEPPL OR co-processing a GGEPIL OR disposal at common facility a BEIL
Sulfonyl Urea (Residue),	Solid	6500	Partly biodegradable	Polymeric Organic	Personal of Sarah Silver ones
Triazole based Fungicides (Residue),	Solid	6500	Partly biodegradable	Polymeric Organic	Do 1015 to 12217 period of the contract of the
Pyrethroides	Solid	6500	Partly biodegradable	Polymeric Organic	CO STOR Sulvey of Committy
Dust (Agro plant)	Solid	966	British	Mixture of Dust, Rust & Spillage chemicals	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Hyflo,	Semi Solid	No Calorific Value	Non biodegradable	Non flammable, non reactive, partly organic -Inorganic	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Dust from Air Filtration System,	Solid			Residual product particles	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at

		THE REAL PROPERTY.			
				The state of the state of	BEIL
Liners /Bags, NOs	Solid	NA	NA	Without any Chemical contamination after decontamination	Collection, Storage, Transportation and sel after decontamination OR Collection Storage, Transportation and sell to
Drums/HDPE Carboys,	Solid	NA	NA	Without any Chemical contamination after decontamination	authorized party/vendor OR Reuse after decontamination
Chemical containing residue from decontamination and disposal,	solid	netor was		1 (08 av 1 (18 av 1 (Collection, Storage, Transportation, Disposal by Incineration at own Incinerator.
Flue gas cleaning residue,	Solid	prod	Tuno de a		Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Toxic metal containing residue from used-ion exchange material; in water purification,	Solid				Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Sludge from ETP, Gypsum from ETP, Chemical Gypsum, sludge from waste water treatment	Semi solid	No Calorific Value	Partly biodegradable	Mostly gypsum	Collection, storage, Transportation, disposal at OWN TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
MEA distillation residue,	Visc. Liq.	9500	Partly biodegradable	Polymeric aromatic compound	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co- processing at RSPL, Panoli OR co-

187 (84) 187 (84)			paseh gara	mente municipality	processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility atBEIL
Spent Catalyst,	Solid	7775	esto Pegny Sesucia	Note that	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Sludge from wet scrubber,	Solid				Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Incineration ash,	Solid	No Calorific Value	Non biodegradable	Inorganic compounds e.g. Silica, NaCI.	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Salt from MEE	Solid	Not applicable	Non biodegradable	99% Sodium salt	Collection, storage, Transportation, disposal at OWN TSDF OR selling to actual reuser OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
Dilute MnSo4	Liquid	ne de la company	-		Collection, Storage, Transportation, Disposal at M/s Atul Limited, Plot No. 297, GIDC Estate, Ankleshwar, Bharuch- 393002
2,6 Dichloro phenol	Solid			Phenolic compound	Collection, storage, Transportation, disposal by selling to actual reuser OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at

				SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
2,4,6 Trichloro phenol	Solid		Phenolic compound	Collection, storage, Transportation, disposal by selling to actual reuser OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
p-CBSA/Na-Salt	Solid		pCBSA	Collection, storage, Transportation, disposal by selling to actual reuser OR co- processing at RSPL, Panoli OR co- processing at cement industry OR co- processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
High TDS / High COD effluent	Liquid			Collection, storage, Transportation, disposal to our own MEE/ Incinerator and/or at common GPCB approved facility
30% HCI .	Liquid		Spent acid	Collection, storage, Transportation, utilized in own plan for captive consumption OR sell to those units who having permission of rule 9 under the Hazardous & other wastes (Management & Transboundary Movement) rule-2016

Annexure: 4

Water Conservation

Following actions were taken for water conservation during recent year.

- 1. Use of treated effluent in place of raw water in scrubbers.
- 2. Reuse of wash water in plant process
- 3. Reuse of boiler blowdown water for cooling water make up at cooling tower after passing it through PHE for heat recovery

Rain water harvesting: In few plants, rain water is being recharged from the terrace and has been used as a makeup of cooling tower during the monsoon season.

We already have two numbers of check dams in natural storm water drains to collect and harvest rain water in Monsoon.

We have 2 ponds with approximate storing capacity of 14000 KL to store surface runoff coming from Pamera hill and in use.

Company has harvest 10.59 lac KL rain water during 2021.

Energy Conservation

Electricity forms one of the important components of energy used at Atul Limited. Major part of electricity used at Atul, is produced in the coal based captive power plant.

Energy Conservation Measures:

- 1. Installation of energy efficient cooling water and chilled water pumps.
- 2. Replacement of old motors by energy efficient motors
- 3. Heat recovery from steam condensate
- 4. Controlling steam pressure of steam ejectors.
- 5. Optimization of pump size as per actual operating requirement
- 6. Replacement of high pressure air compressor by low pressure air compressor for process air requirements

Annexure: 5

Details of Investment for Environment Protection for the year 2021-22

Sr.No	Parameter	Recurring Cost per annum (Rs. in lacs) 2021-22
1	Air Pollution Control	
2	Liquid Pollution Control	5464
3	Environmental Monitoring and Management	47
4	Solid waste Disposal	176
5	Occupational health	41
6	Green belt	14
Total		5742